首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1225篇
  免费   36篇
  国内免费   3篇
化学   886篇
晶体学   14篇
力学   19篇
数学   46篇
物理学   299篇
  2023年   6篇
  2022年   7篇
  2021年   18篇
  2020年   14篇
  2019年   20篇
  2018年   9篇
  2017年   11篇
  2016年   12篇
  2015年   23篇
  2014年   20篇
  2013年   60篇
  2012年   51篇
  2011年   62篇
  2010年   39篇
  2009年   25篇
  2008年   64篇
  2007年   74篇
  2006年   59篇
  2005年   68篇
  2004年   53篇
  2003年   41篇
  2002年   41篇
  2001年   44篇
  2000年   32篇
  1999年   26篇
  1998年   24篇
  1997年   13篇
  1996年   19篇
  1995年   15篇
  1994年   14篇
  1993年   21篇
  1992年   24篇
  1991年   22篇
  1990年   14篇
  1989年   25篇
  1988年   7篇
  1987年   8篇
  1986年   17篇
  1985年   16篇
  1984年   17篇
  1983年   11篇
  1982年   14篇
  1981年   10篇
  1979年   14篇
  1978年   10篇
  1977年   11篇
  1976年   10篇
  1975年   9篇
  1974年   12篇
  1973年   8篇
排序方式: 共有1264条查询结果,搜索用时 15 毫秒
61.
Novel camphor-1,2,4-triazines fused with imidazole 2–3 , thiadiazole 4 , 1,2,4-triazole 7 , pyrimidine 9–13 and 1,3,5-triazine 14 , were synthesized starting from (5R,8S)-3-amino-5,9,9-trimethyl-5,6,7,8-tetrahydro-5,8-methano-1,2,4-benzotriazine 1 . Evaluation of central nervous system stimulant activity demonstrated that the presence of a N-N group at C-3 position of 1,2,4-benzotriazine will be essential for the activity.  相似文献   
62.
Efficient activation of CO2 at low temperature was achieved by reverse water–gas shift via chemical looping (RWGS-CL) by virtue of fast oxygen ion migration in a Cu–In structured oxide, even at lower temperatures. Results show that a novel Cu–In2O3 structured oxide can show a remarkably higher CO2 splitting rate than ever reported. Various analyses revealed that RWGS-CL on Cu–In2O3 is derived from redox between Cu–In2O3 and Cu–In alloy. Key factors for high CO2 splitting rate were fast migration of oxide ions in the alloy and the preferential oxidation of the interface of alloy–In2O3 in the bulk of the particles. The findings reported herein can open up new avenues to achieve effective CO2 conversion at lower temperatures.

Efficient activation of CO2 at low temperature was achieved by reverse water–gas shift via chemical looping (RWGS-CL) by virtue of fast oxygen ion migration in a Cu–In structured oxide, even at lower temperatures.  相似文献   
63.
A ruthenium complex catalyzes a new cycloisomerization reaction of 2,2′‐diethynylbiphenyls to form 9‐ethynylphenanthrenes, thereby cleaving the carbon–carbon triple bond of the original ethynyl group. A metal–vinylidene complex is generated from one of the two ethynyl groups, and its carbon–carbon double bond undergoes a [2+2] cycloaddition with the other ethynyl group to form a cyclobutene. The phenanthrene skeleton is constructed by the subsequent electrocyclic ring opening of the cyclobutene moiety.  相似文献   
64.
65.
66.
A sliding graft copolymer (SGC) with poly(ethylene glycol) (PEG) side chains was prepared by ester formation between terminal carboxyl groups of oxidized PEG methyl ether with molecular weight of 2000 (mPEG2000‐COOH) and hydroxyl groups of a polyrotaxane consisting of PEG and cyclodextrins (CDs). Formation of the SGC structure was confirmed by 1H NMR, attenuated total reflectance Fourier‐transformed infrared, and gel permeation chromatography. The SGC was soluble in good solvents of PEG and insoluble in poor solvents of PEG. Estimation of the number of grafted mPEG chains suggested a “rope‐curtain” like structure, in which an mPEG chain is connected to each CD ring. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
67.
Sulfur-containing cycloalkenes possessing disulfide units 1, 2, and 3 were obtained by oxidation of cis-disodium ethene-1,2-dithiolate, and their crystal structures were determined by the X-ray crystallographic analyses. Compound 1 was found to give the ring expansion product 3 in acetonitrile even at room temperature and also form reactive thioaldehyde under irradiation.  相似文献   
68.
69.
A directed cross‐aldol reaction of silyl enol ethers with carbonyl compounds, such as aldehydes and ketones, promoted by a Lewis acid, a reaction which is now widely known as the Mukaiyama aldol reaction. It was first reported in 1973, and this year marks the 40th anniversary. The directed cross‐aldol reactions mediated by boron enolates and tin(II) enolates also emerged from the Mukaiyama laboratory. These directed cross‐aldol reactions have become invaluable tools for the construction of stereochemically complex molecules from two carbonyl compounds. This Minireview provides a succinct historical overview of their discoveries and the early stages of their development.  相似文献   
70.
trans-11,12-Epoxy-(6Z,9Z)-6,9-henicosadiene (posticlure) has been identified from a pheromone gland of the lymantriid species, Orgyia postica. Since the diversity of Lepidoptera suggests that some species utilize the structure-related epoxy compound as a sex pheromone component, epoxydienes and epoxytrienes derived from (6Z,9Z,11E)-6,9,11-trienes and (3Z,6Z,9Z,11E)-3,6,9,11-tetraenes with a C19–C21 chain were systematically synthesized and the chemical data were accumulated in order to contribute to a new pheromone research. Peracid oxidation of each triene and each tetraene produced, respectively, a mixture of three epoxydienes (cis-6,7-epoxy-9,11-diene; cis-9,10-epoxy-6,11-diene; and trans-11,12-epoxy-6,9-diene) and four epoxytrienes (cis-3,4-epoxy-6,9,11-triene; cis-6,7-epoxy-3,9,11-triene; cis-9,10-epoxy-3,6,11-triene; and trans-11,12-epoxy-3,6,9-triene). While the 9,10-epoxy compounds were unstable and, interestingly, converted into 9-ketone derivatives after chromatography over SiO2, each positional isomer was isolated by HPLC equipped with an ODS column, and the chemical structure was determined by NMR analysis. On the GC-MS analysis with a DB-23 column, the positional isomers were also eluted separately and characteristic mass spectra were proposed. By comparing the spectral data of the epoxy compounds with a different carbon chain, diagnostic fragment ions reflecting the chemical structure were determined as follows: m/z 79, 109, 113, and M-114 for the 6,7-epoxydienes; m/z 69, 97, 111, 139, and M-111 for the 9,10-epoxydienes; m/z 57, 79, 109, 136, M-151, and M-111 for the 11,12-epoxydienes; m/z 79, 91, 105, and 119 for the 3,4-epoxytrienes; m/z 79, 124, M-124, M-96, and M-69 for the 6,7-epoxytrienes; m/z 79, 95, 109, 137, and M-108 for the 9,10-epoxytrienes; and m/z 79, 134, M-149, M-109, and M-95 for the 11,12-epoxytrienes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号