首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4551篇
  免费   263篇
  国内免费   67篇
化学   3361篇
晶体学   59篇
力学   192篇
综合类   2篇
数学   484篇
物理学   783篇
  2024年   42篇
  2023年   75篇
  2022年   404篇
  2021年   352篇
  2020年   255篇
  2019年   227篇
  2018年   221篇
  2017年   173篇
  2016年   290篇
  2015年   187篇
  2014年   233篇
  2013年   394篇
  2012年   313篇
  2011年   325篇
  2010年   203篇
  2009年   163篇
  2008年   191篇
  2007年   165篇
  2006年   116篇
  2005年   102篇
  2004年   67篇
  2003年   67篇
  2002年   58篇
  2001年   27篇
  2000年   21篇
  1999年   20篇
  1998年   15篇
  1997年   8篇
  1996年   14篇
  1995年   13篇
  1994年   7篇
  1993年   12篇
  1992年   11篇
  1991年   12篇
  1989年   12篇
  1988年   9篇
  1987年   8篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1982年   7篇
  1981年   6篇
  1980年   7篇
  1979年   6篇
  1978年   3篇
  1977年   4篇
  1976年   4篇
  1975年   2篇
  1973年   3篇
排序方式: 共有4881条查询结果,搜索用时 78 毫秒
121.
In the present study, hard ferromagnetic (M-type strontium hexaferrite) SrFe12O19 was co-doped by Zn and Zr for magnetic hyperthermia applications. As a result of the high concentration of single domain SrFe12O19 nanoparticles (suspended in the ferrofluid), they found a large hydrodynamic diameter, which caused a long-time Brownian relaxation under the AC magnetic field. On the other hand, increasing the Zn-Zr content (low concentration of SrFe12O19) led to a drop in anisotropy, which coincided with a short-time N´eel relaxation. All of the substituted samples with a multi-disperse state in ferrofluid exhibited an almost equal amount of the N´eel and Brownian effects. Consequently, the magnetic saturation (Ms) was considered as the dominant factor in the specific absorption rate (SAR) of the substituted samples. Transformation to the mono-disperse state was followed by the decrease of the Brownian relaxation time and hence the increase of the SAR. The interesting point in mono-disperse state was the heat generation of pure SrFe12O19 under the AC magnetic field as a result of the decrement of the Brownian relaxation time.  相似文献   
122.
As an effective separation tool, free-flow electrophoresis has not been used for purification of low-abundance protein in complex sample matrix. Herein, lysozyme in complex egg white matrix was chosen as the model protein for demonstrating the purification of low-content peptide via an FFE coupled with gel fitration chromatography (GFC). The crude lysozyme in egg while was first separated via free-flow zone electrophoresis (FFZE). After that, the fractions with lysozyme activity were condensed via lyophilization. Thereafter, the condensed fractions were further purified via a GFC of Sephadex G50. In all of the experiments, a special poly(acrylamide- co-acrylic acid) (P(AM-co-AA)) gel electrophoresis and a mass spectrometry were used for identification of lysozyme. The conditions of FFZE were optimized as follows: 130 μL/min sample flow rate, 4.9 mL/min background buffer of 20 mM pH 5.5 Tris-Acetic acid, 350 V, and 14 °C as well as 2 mg/mL protein content of crude sample. It was found that the purified lysozyme had the purity of 80% and high activity as compared with its crude sample with only 1.4% content and undetectable activity. The recoveries in the first and second separative steps were 65% and 82%, respectively, and the total recovery was about 53.3%. The reasons of low recovery might be induced by diffusion of lysozyme out off P(AM-co-AA) gel and co-removing of high-abundance egg ovalbumin. All these results indicated FFE could be used as alternative tool for purification of target solute with low abundance.  相似文献   
123.
In recent years, there is emerging evidence that isoflavonoids, either dietary or obtained from traditional medicinal plants, could play an important role as a supplementary drug in the management of type 2 diabetes mellitus (T2DM) due to their reported pronounced biological effects in relation to multiple metabolic factors associated with diabetes. Hence, in this regard, we have comprehensively reviewed the potential biological effects of isoflavonoids, particularly biochanin A, genistein, daidzein, glycitein, and formononetin on metabolic disorders and long-term complications induced by T2DM in order to understand whether they can be future candidates as a safe antidiabetic agent. Based on in-depth in vitro and in vivo studies evaluations, isoflavonoids have been found to activate gene expression through the stimulation of peroxisome proliferator-activated receptors (PPARs) (α, γ), modulate carbohydrate metabolism, regulate hyperglycemia, induce dyslipidemia, lessen insulin resistance, and modify adipocyte differentiation and tissue metabolism. Moreover, these natural compounds have also been found to attenuate oxidative stress through the oxidative signaling process and inflammatory mechanism. Hence, isoflavonoids have been envisioned to be able to prevent and slow down the progression of long-term diabetes complications including cardiovascular disease, nephropathy, neuropathy, and retinopathy. Further thoroughgoing investigations in human clinical studies are strongly recommended to obtain the optimum and specific dose and regimen required for supplementation with isoflavonoids and derivatives in diabetic patients.  相似文献   
124.
This contribution investigates thermal decomposition of leucine, as a representative model compound for amino acids in algal biomass. We map out potential energy surface for a wide array of unimolecular and self-condensation reactions operating in the decomposition of leucine. Decarboxylation and dehydration of leucine ensues by eliminating CO2 and –OH, respectively, from the –COOH group attached to the α-carbon. The molecular channel for deamination involves cleavage of NH2 from α-carbon of leucine. The activation energies for direct elimination of CO2, NH3, and H2O from a leucine molecule lie within 20.7 kJ/mol of each other. Activation energies for these decomposition pathways reside below the bond dissociation enthalpy of H–C(α) of 323.1 kJ/mol. The decarboxylation, deamination, and dehydration pathways, via radical-prompted pathways, systematically require lower energy barriers, in reference to closed-shell reaction corridors. Detailed computations at the CBS-QB3 level provide the Arrhenius rate parameters for the unimolecular and bimolecular reactions, and standard enthalpies of formation, standard entropies, and heat capacities for all the products and intermediates. A kinetic analysis of gas-phase reactions, within the context of a plug-flow reactor model, accounts qualitatively for the formation of major products observed experimentally in the thermal degradation of the condensed-phase leucine. Among notable N-containing species, the model predicts the prevailing of NH3 over HCN and HNCO, in addition to corresponding appreciable concentrations of amines, imines, and nitriles. Our detailed kinetic investigation illustrates a negligible contribution of the self-condensation reactions of leucine in the gas phase.  相似文献   
125.
A simple and fast method named microfunnel‐filter‐based emulsification microextraction is introduced for an efficient determination of some organophosphorus pesticides including diazinon, malathion, and chlorpyrifos in the environmental samples including the river, sea, and well water. This method is based upon the dispersion of a low‐toxicity organic solvent (dihexyl ether), as the extractant, in a high volume of an aqueous sample solution (45 mL). It is implemented without a centrifugation step, and using a syringe filter and a micro‐funnel, the phase separation and transfer of the enriched analytes to the gas chromatograph are simply achieved. By filtration of the extractant phase, a suitable sample clean‐up is obtained, and the total extraction time is just a few minutes. The factors influencing the extraction efficiency are optimized, and under the optimal conditions, the proposed method provides a good linearity (in the range of 15–1500 ng/mL (R2 > 0.996). A high enrichment factor is obtained (in the range of 306–342), and the method provides low limits of detection and quantification (in the ranges of 4–8 and 15–25 ng/mL, respectively).  相似文献   
126.
Hyperbranched poly(2‐ethyl‐2‐oxazoline) was synthesized by a combination of cationic ring‐opening polymerization and the oxidation of thiol to disulfide groups. A three‐arm star poly(2‐ethyl‐2‐oxazoline) (PEtOx) was first synthesized using 1,3,5‐tris(bromomethyl) benzene as an initiator. The star PEtOx was end‐capped with potassium ethyl xanthate. Similarly, a linear PEtOx was synthesized and end‐capped with potassium ethyl xanthate using benzyl bromide as an initiator. Hyperbranched PEtOx was then obtained by in situ cleaving and subsequent oxidation of the star PEtOx and linear PEtOx mixture with n‐butylamine as both a cleaving agent and a base in tetrahydrofuran. The linear PEtOx was used to prevent the formation of gel. The hyperbranched PEtOx can be cleaved with dithiothreitol to trithiol and monothiol polymer. The hyperbranched PEtOx shows no remaining thiols using Ellman's assay. The resulting hyperbranched PEtOx was hydrolyzed to a novel hyperbranched polyethyleneimine with degradable disulfide linkages. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2030–2037  相似文献   
127.
Photodegradation of organic pollutants strongly depends on design of metal oxide semiconductor photocatalysts. Graphene, if composited with ZnO, can effectively enhance its photocatalytic performance for the eradication of pollutants from aqueous medium. Here in, ZnO-rGO is reported as highly active catalyst for degradation of methylene blue. A 200-mg/L solution of methylene blue dye was completely degraded within 1 h in comparison to 74% and 56% degradation over ZnO and rGO, respectively. The commonly used mechanisms of heterogeneous catalytic reactions, the Langmuir-Hinshelwood mechanism, and the Eley-Rideal mechanisms, were used to describe the reaction kinetics. The Langmuir-Hinshelwood mechanism was found as more favorable in this study. Apparent activation energy, Eap, true activation energy, ET, entropy, ΔS, and enthalpy, ΔH were calculated as 36.2 kJ/mol, 13.1 kJ/mol, 197.5 J/mol, and 23.1 kJ/mol, respectively.  相似文献   
128.
Layered/two-dimensional covalent organic frameworks (2D COF) are crystalline porous materials composed of light elements linked by strong covalent bonds. Interlayer force is one of the main factors directing the formation of a stacked layer structure, which plays a vital role in the stability, crystallinity, and porosity of layered COFs. The as-developed new way to modulate the interlayer force of imine-linked 2D TAPB-PDA-COF (TAPB = 1,3,5-tris(4-aminophenyl)benzene, PDA = terephthaldehyde) by only adjusting the pH of the solution. At alkaline and neutral pH, the pore size of the COF decreases from 34 Å due to the turbostratic effect. Under highly acidic conditions (pH 1), TAPB-PDA-COF shows a faster and stronger turbostratic effect, thus causing the 2D structure to exfoliate. This yields bulk quantities of an exfoliated few/single-layer 2D COF, which was well dispersed and displayed a clear Tyndall effect (TE). Furthermore, nanopipette-based electrochemical testing also confirms the slipping of layers with increase towards acidic pH. A model of pH-dependent layer slipping of TAPB-PDA-COF was proposed. This controllable pH-dependent change in the layer structure may open a new door for potential applications in controlled gas adsorption/desorption and drug loading/releasing.  相似文献   
129.
Journal of Thermal Analysis and Calorimetry - The effect on the entropy production and MHD convection of the hybrid nanofluid Al2O3–Cu/water (water with Cu and Al2O3 nanoparticles) in a...  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号