首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8424篇
  免费   400篇
  国内免费   91篇
化学   5694篇
晶体学   77篇
力学   321篇
综合类   6篇
数学   1018篇
物理学   1799篇
  2024年   50篇
  2023年   109篇
  2022年   562篇
  2021年   531篇
  2020年   370篇
  2019年   359篇
  2018年   347篇
  2017年   281篇
  2016年   452篇
  2015年   317篇
  2014年   401篇
  2013年   731篇
  2012年   578篇
  2011年   612篇
  2010年   439篇
  2009年   373篇
  2008年   399篇
  2007年   342篇
  2006年   252篇
  2005年   171篇
  2004年   172篇
  2003年   112篇
  2002年   105篇
  2001年   54篇
  2000年   45篇
  1999年   42篇
  1998年   41篇
  1997年   35篇
  1996年   45篇
  1995年   24篇
  1994年   32篇
  1993年   29篇
  1992年   27篇
  1991年   18篇
  1990年   31篇
  1989年   21篇
  1988年   23篇
  1987年   25篇
  1986年   14篇
  1985年   32篇
  1984年   33篇
  1983年   17篇
  1982年   26篇
  1981年   20篇
  1980年   41篇
  1979年   19篇
  1978年   14篇
  1977年   21篇
  1976年   23篇
  1973年   16篇
排序方式: 共有8915条查询结果,搜索用时 15 毫秒
11.
Summary A simple method based on circular thin-layer chromatography is described for the separation of aromatic and,-unsaturated aldehydes as their isonicotinoyl hydrazones. The development of the chromatoplate is complete within 2 minutes.
Zusammenfassung Aromatische und,-ungesättigte Aldehyde lassen sich durch ringförmige Dünnschichtchromatographie ihrer Isonikotinoylhydrazone trennen. Die Entwicklung der Dünnschichtplatten ist innerhalb 2 Minuten zu bewerkstelligen.

Résumé On décrit une méthode simple fondée sur la chromatographie circulaire en couche mince pour séparer les aldéhydes aromatiques et, non saturés, sous forme de leurs hydrazones isonicotinoyles. Le développement de la chromatoplaque est complet en deux minutes.
  相似文献   
12.
Two novel chromogenic cone calix[4]dibenzothiacrown ethers 3 and 4 in which nitrophenylazo groups attached at the phenyl ring of dibenzothiacrown unit were described. The extraction properties of 3 and 4 toward different transition metal ions have been studied using conductometric technique and found to exhibit Cu2+ and Hg2+ selectivity with very high stability constants range from log K assoc = 5.19 to log K assoc = 8.72.  相似文献   
13.
A rapid and reproducible hydrophilic liquid chromatography (HILIC) process was established for concomitant determination of remogliflozin etabonate (RE), vildagliptin (VD), and metformin (MF) in a formulation. A face-centered central composite experimental design was employed to optimize and predict the chromatographic condition by statistically studying the surface response model and design space with desirability close to one. A HILIC column with a simple mobile phase of acetonitrile (65% v/v) and 20 mM phosphate buffer (35% v/v, pH 6, controlled with orthophosphoric acid) was used to separate RE, VD, and MF. RE, VD, and MF were separated in 3.6 min using an isocratic mode mobile phase flow at a flow rate of 1.4 mL at room temperature, and the analytes were examined by recording the absorption at 210 nm. The developed HILIC method was thoroughly validated for all parameters recommended by ICH, and linearity was observed in the ranges 20–150 µg/mL, 10–75 µg/mL, and 50–750 µg/mL for RE, VD, and MF, respectively, along with excellent regression coefficients (r2 > 0.999). The calculated percentage relative deviation and relative error ascertained the precision and accuracy of the method. The selectivity and accuracy were further confirmed by the high percentage recovery of added standard drugs to the formulation using the standard addition technique. The robustness of the HILIC processes was confirmed by developing a half-normal probability plot and Pareto chart, as the slight variation of a single factor had no significant influence on the assay outcomes. Utilization of the optimized HILIC procedure for concurrent quantification of RE, VD, and MF in solid dosage forms showed accurate and reproducible results. Hence, the fast HILIC method can be regularly employed for the quality assurance of pharmaceutical preparations comprising RE, VD, and MF.  相似文献   
14.
Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it has been considered as a traditional medicine for decades. Apigenin shows synergistic effects in combined treatment with sorafenib in the HepG2 human cell line (HCC) in less time and statistically reduces the viability of tumor cells, migration, gene expression and apoptosis. The combination of anti-cancerous drugs with apigenin has shown health promoting potential against various cancers. It can prevent cell mobility, maintain the cell cycle and stimulate the immune system. Apigenin also suppresses mTOR activity and raises the UVB-induced phagocytosis and reduces the cancerous cell proliferation and growth. It also has a high safety threshold, and active (anti-cancer) doses can be gained by consuming a vegetable and apigenin rich diet. Apigenin also boosted autophagosome formation, decreased cell proliferation and activated autophagy by preventing the activity of the PI3K pathway, specifically in HepG2 cells. This paper provides an updated overview of apigenin’s beneficial anti-inflammatory, antibacterial, antiviral, and anticancer effects, making it a step in the right direction for therapeutics. This study also critically analyzed the effect of apigenin on cancer cell signaling pathways including the PI3K/AKT/MTOR, JAK/STAT, NF-κB and ERK/MAPK pathways.  相似文献   
15.
Agriculture is the backbone of every developing country. Among various crops, wheat (Triticum aestivum L.) belongs to the family Poaceae and is the most important staple food crop of various countries. Different biotic (viruses, bacteria and fungi) and abiotic stresses (water logging, drought and salinity) adversely affect the qualitative and quantitative attributes of wheat. Among these stresses, salinity stress is a very important limiting factor affecting the morphological, physiological, biochemical attributes and grain yield of wheat. This research work was carried out to evaluate the influence of phytosynthesized TiO2 NPs on the germination, physiochemical, and yield attributes of wheat varieties in response to salinity. TiO2 NPs were synthesized using TiO2 salt and a Buddleja asiatica plant extract as a reducing and capping agent. Various concentrations of TiO2 nanoparticles (20, 40, 60 and 80 mg/L) and salt solutions (NaCl) (100 and 150 mM) were used. A total of 20 mg/L and 40 mg/L improve germination attributes, osmotic and water potential, carotenoid, total phenolic, and flavonoid content, soluble sugar and proteins, proline and amino acid content, superoxide dismutase activity, and reduce malondialdhehyde (MDA) content at both levels of salinity. These two concentrations also improved the yield attributes of wheat varieties at both salinity levels. The best results were observed at 40 mg/L of TiO2 NPs at both salinity levels. However, the highest concentrations (60 and 80 mg/L) of TiO2 NPs showed negative effects on germination, physiochemical and yield characteristics and causes stress in both wheat varieties under control irrigation conditions and salinity stress. Therefore, in conclusion, the findings of this research are that the foliar application of TiO2 NPs can help to improve tolerance against salinity stress in plants.  相似文献   
16.
The lack of effective treatment for neurological disorders has encouraged the search for novel therapeutic strategies. Remarkably, neuroinflammation provoked by the activated microglia is emerging as an important therapeutic target for neurological dysfunction in the central nervous system. In the pathological context, the hyperactivation of microglia leads to neuroinflammation through the release of neurotoxic molecules, such as reactive oxygen species, proteinases, proinflammatory cytokines and chemokines. Cannabidiol (CBD) is a major pharmacologically active phytocannabinoids derived from Cannabis sativa L. CBD has promising therapeutic effects based on mounting clinical and preclinical studies of neurological disorders, such as epilepsy, multiple sclerosis, ischemic brain injuries, neuropathic pain, schizophrenia and Alzheimer’s disease. A number of preclinical studies suggested that CBD exhibited potent inhibitory effects of neurotoxic molecules and inflammatory modulators, highlighting its remarkable therapeutic potential for the treatment of numerous neurological disorders. However, the molecular mechanisms of action underpinning CBD’s effects on neuroinflammation appear to be complex and are poorly understood. This review summarises the anti-neuroinflammatory activities of CBD against various neurological disorders with a particular focus on their main molecular mechanisms of action, which were related to the downregulation of NADPH oxidase-mediated ROS, TLR4-NFκB and IFN-β-JAK-STAT pathways. We also illustrate the pharmacological action of CBD’s derivatives focusing on their anti-neuroinflammatory and neuroprotective effects for neurological disorders. We included the studies that demonstrated synergistic enhanced anti-neuroinflammatory activity using CBD and other biomolecules. The studies that are summarised in the review shed light on the development of CBD, including its derivatives and combination preparations as novel therapeutic options for the prevention and/or treatment of neurological disorders where neuroinflammation plays an important role in the pathological components.  相似文献   
17.
Four new Schiff base functionalized 1,2,3-triazolylidene nickel complexes, [Ni-(L1NHC)2](PF6)2; 3, [Ni-(L2NHC)2](PF6)2; 4, [Ni-(L3NHC)](PF6)2; 7 and [Ni-(L4NHC)](PF6)2; 8, (where L1NHC = (E)-3-methyl-1-propyl-4-(2-(((2-(pyridin-2-yl)ethyl)imino)methyl)phenyl)-1H-1,2,3-triazol-3-ium hexafluorophosphate(V), 1, L2NHC = (E)-3-methyl-4-(2-((phenethylimino)methyl)phenyl)-1-propyl-1H-1,2,3-triazol-3-ium hexafluorophosphate(V), 2, L3NHC = 4,4′-(((1E)-(ethane-1,2-diylbis(azanylylidene))bis(methanylylidene))bis(2,1-phenylene))bis(3-methyl-1-propyl-1H-1,2,3-triazol-3-ium) hexafluorophosphate(V), 5, and L4NHC = 4,4′-(((1E)-(butane-1,4-diylbis(azanylylidene))bis(methanylylidene))bis(2,1-phenylene))bis(3-methyl-1-propyl-1H-1,2,3-triazol-3-ium) hexafluorophosphate(V), 6), were synthesised and characterised by a variety of spectroscopic methods. Square planar geometry was proposed for all the nickel complexes. The catalytic potential of the complexes was explored in the oxidation of styrene to benzaldehyde, using hydrogen peroxide as a green oxidant in the presence of acetonitrile at 80 °C. All complexes showed good catalytic activity with high selectivity to benzaldehyde. Complex 3 gave a conversion of 88% and a selectivity of 70% to benzaldehyde in 6 h. However, complexes 4 and 7–8 gave lower conversions of 48–74% but with higher (up to 90%) selectivity to benzaldehyde. Results from kinetics studies determined the activation energy for the catalytic oxidation reaction as 65 ± 3 kJ/mol, first order in catalyst and fractional order in the oxidant. Results from UV-visible and CV studies of the catalytic activity of the Ni-triazolylidene complexes on styrene oxidation did not indicate any clear possibility of generation of a Ni(II) to Ni(III) catalytic cycle.  相似文献   
18.
Acetylcholinesterase (AChE) inhibitors and calcium channel blockers are considered effective therapies for Alzheimer’s disease. AChE plays an essential role in the nervous system by catalyzing the hydrolysis of the neurotransmitter acetylcholine. In this study, the inhibition of the enzyme AChE by Sarcorucinine-D, a pregnane type steroidal alkaloid, was investigated with experimental enzyme kinetics and molecular dynamics (MD) simulation techniques. Kinetics studies showed that Sarcorucinine-D inhibits two cholinesterases—AChE and butyrylcholinesterase (BChE)—noncompetitively, with Ki values of 103.3 and 4.66 µM, respectively. In silico ligand-protein docking and MD simulation studies conducted on AChE predicted that Sarcorucinine-D interacted via hydrophobic interactions and hydrogen bonds with the residues of the active-site gorge of AChE. Sarcorucinine-D was able to relax contractility concentration-dependently in the intestinal smooth muscles of jejunum obtained from rabbits. Not only was the spontaneous spasmogenicity inhibited, but it also suppressed K+-mediated spasmogenicity, indicating an effect via the inhibition of voltage-dependent Ca2+ channels. Sarcorucinine-D could be considered a potential lead molecule based on its properties as a noncompetitive AChE inhibitor and a Ca2+ channel blocker.  相似文献   
19.
Biopolymers, especially polysaccharides (e.g., gum Arabic), are widely applied as drug carriers in drug delivery systems due to their advantages. Curcumin, with high antioxidant ability but limited solubility and bioavailability in the body, can be encapsulated in gum Arabic to improve its solubility and bioavailability. When curcumin is encapsulated in gum Arabic, it is essential to understand how it works in various conditions. As a result, in Simulated Intestinal Fluid and Simulated Gastric Fluid conditions, we investigated the potential of gum Arabic as the drug carrier of curcumin. This study was conducted by varying the gum Arabic concentrations, i.e., 5, 10, 15, 20, 30, and 40%, to encapsulate 0.1 mg/mL of curcumin. Under both conditions, the greater the gum Arabic concentration, the greater the encapsulation efficiency and antioxidant activity of curcumin, but the worse the gum Arabic loading capacity. To achieve excellent encapsulation efficiency, loading capacity, and antioxidant activity, the data advises that 10% is the best feasible gum Arabic concentration. Regarding the antioxidant activity of curcumin, the findings imply that a high concentration of gum Arabic was effective, and the Simulated Intestinal Fluid brought an excellent surrounding compared to the Simulated Gastric Fluid solution. Moreover, the gum Arabic releases curcumin faster in the Simulated Gastric Fluid condition.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号