首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   487篇
  免费   21篇
化学   322篇
晶体学   3篇
力学   10篇
数学   45篇
物理学   128篇
  2024年   1篇
  2023年   7篇
  2022年   11篇
  2021年   22篇
  2020年   24篇
  2019年   14篇
  2018年   23篇
  2017年   21篇
  2016年   41篇
  2015年   15篇
  2014年   25篇
  2013年   32篇
  2012年   47篇
  2011年   41篇
  2010年   27篇
  2009年   9篇
  2008年   19篇
  2007年   15篇
  2006年   22篇
  2005年   18篇
  2004年   10篇
  2003年   10篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   3篇
  1984年   3篇
  1981年   1篇
  1978年   1篇
  1975年   1篇
  1956年   2篇
  1939年   1篇
  1936年   1篇
排序方式: 共有508条查询结果,搜索用时 15 毫秒
21.
This paper presents the optimized K-means (OKM) algorithm that can homogenously segment an image into regions of interest with the capability of avoiding the dead centre and trapped centre at local minima phenomena. Despite the fact that the previous improvements of the conventional K-means (KM) algorithm could significantly reduce or avoid the former problem, the latter problem could only be avoided by those algorithms, if an appropriate initial value is assigned to all clusters. In this study the modification on the hard membership concept as employed by the conventional KM algorithm is considered. As the process of a pixel is assigned to its associate cluster, if the pixel has equal distance to two or more adjacent cluster centres, the pixel will be assigned to the cluster with null (e. g., no members) or to the cluster with a lower fitness value. The qualitative and quantitative analyses have been performed to investigate the robustness of the proposed algorithm. It is concluded that from the experimental results, the new approach is effective to avoid dead centre and trapped centre at local minima which leads to producing better and more homogenous segmented images.  相似文献   
22.
The method employing molecularly imprinted polymers for the extraction and clean up of endocrine‐disrupting compounds (estrogens, bisphenol A, and alkylphenols) from water and sediment is described. The identical extraction/clean‐up and LC‐MS/MS condition were used for the analysis of both types of samples. The method showed high recoveries ranging from 90 to 99% with excellent precision (intrabatch: 3.6–9.3%; interbatch: 5.6–11.4% for water; intrabatch: 4.3–8.5%; interbatch: 6.1–9.6% for sediment). The LOD was in the range of 0.7–1.9 ng/L and 0.3–0.6 ng/g for water and sediment, respectively. Overall extraction on molecularly imprinted polymers substantially enhanced sample clean‐up. The difference in efficiency of clean‐up was particularly pronounced when a large sample volume/weight was extracted and analyzed. Finally, the method was successfully applied for the analysis of 20 water and sediment samples.  相似文献   
23.
The promiscuous aldo–ketoreductase (AKR) enzyme is used as a sustainable biocatalyst for the first time to catalyze asymmetric aldol reactions in aqueous medium. The reactions between aromatic aldehydes and cyclic/acyclic ketones give the corresponding products in moderate yields and enantioselectivities in the presence of water. The influence of solvents, the mole ratio of substrates, and enzyme concentration are investigated. The mechanism of the AKR1A1-catalyzed aldol reaction is also discussed.  相似文献   
24.
Water-in-diesel (W/D) emulsion fuels were prepared through an ultrasonic processor by using high energy emulsification method. Accordingly, the physical and chemical properties were analyzed. A decrease in viscosity was found in the emulsion fuel in contrast to the neat diesel which signifies the enhanced fluidity of the fuel. The emulsion fuel was then used to carry combustion tests in an internal combustion engine. A decrease in exhaust temperature was observed when a high surfactant to water ratio was used, which lead to minimal heat loss. As water is emulsified with diesel, effectiveness of combustion is improved rather than neat diesel fuel. It was also explored that the addition of water-in-diesel is influential in terms of reduction in exhaust gas emission such as carbon dioxide, carbon monoxide, ammonia from the internal combustion engine. Therefore, this type of emulsion fuel would be a useful contribution in the fuel economy, but also in making it environmentally friendly since diesel fuel is now considered one of the leading fuels causing ecological contamination.  相似文献   
25.
This article describes a dielectrophoresis (DEP)-based simulation and experimental study of human epidermal keratinocyte (HEK) cells for wounded skin cell migration toward rapid epithelialization. MyDEP is a standalone software designed specifically to study dielectric particles and cell response to an alternating current (AC) electric field. This method demonstrated that negative dielectrophoresis (NDEP) occurs in HEK cells at a wide frequency range in highly conductive medium. The finite element method was used to characterize particle trajectory based on DEP and drag force. The performance of the system was assessed using HEK cells in a highly conductive EpiLife suspending medium. The DEP experiment was performed by applying sinusoidal wave AC potential at the peak-to-peak voltage of 10 V in a tapered aluminum microelectrode array from 100 kHz to 1 MHz. We experimentally observed the occurrence of NDEP, which attracted HEK cells toward the local electric field minima in the region of interest. The DIPP-MotionV software was used to track cell migration in the prerecorded video via an automatic marker and estimate the average speed and acceleration of the cells. The results showed that HEK cell migration was accomplished approximately at 6.43 μm/s at 100 kHz with 10 V, and FDEP caused the cells to migrate and align at the target position, which resulted in faster wound closures because of the application of an electric field frequency to HEK cells in random locations.  相似文献   
26.
This study aims to determine the effect of fast cooling (quenching) on thermal properties, mechanical strength, morphology and size of the AgNWs. The synthesis of AgNWs was carried out at three different quenching-medium temperatures as follows: at 27 °C (ambient temperature), 0 °C (on ice), and −80 °C (in dry ice) using the polyol method at 130 °C. Furthermore, the AgNWs were sonified for 45 min to determine their mechanical strength. Scanning electron microscopy analysis showed that the quenched AgNWs had decreased significantly; at 27 °C, the AgNWs experienced a change in length from (40 ± 10) to (21 ± 6) µm, at 0 °C from (37 ± 8) to (24 ± 8) µm, and at −80 °C from (34 ± 9) to (29 ± 1) µm. The opposite occurred for their diameter with an increased quenching temperature: at 27 °C from (200 ± 10) to (210 ± 10) nm, at 0 °C from (224 ± 4) to (239 ± 8) nm, and at −80 °C from (253 ± 6) to (270 ± 10) nm. The lower the temperature of the quenching medium, the shorter the length and the higher the mechanical strength of AgNWs. The UV-Vis spectra of the AgNWs showed peak absorbances at 350 and 411 to 425 nm. Thermogravimetric analysis showed that AgNWs quenched at −80 °C have better thermal stability as their mass loss was only 2.88%, while at the quenching temperatures of 27 °C and 0 °C the mass loss was of 8.73% and 4.17%, respectively. The resulting AgNWs will then be applied to manufacture transparent conductive electrodes (TCEs) for optoelectronic applications.  相似文献   
27.
This work is concerned with the growth of TiO2 nanostructures as photovoltaic materials of dyesensitized solar cell (DSSC) via phase liquid deposition technique treated with CTAB surfactant. This work investigates the influence of organic dyes, N719, N3 and Z907 as photosensitizer on the photovoltaic parameters of TiO2 nanostructures dye-sensitized solar cells (DSSCs). It also highlights the effect of the concentration of the best dye, N719 on the performance of the cell. The platinum films as counter electrode of the DSSC were prepared by sputtering platinum pellet on ITO substrate. The redox couple of the electrolyte utilized in the DSSC was iodide/triiodide. The cell sensitized with N719 dye demonstrated the best performance compared with the cell sensitized with another two dyes, N3 and Z907. This is due to N719 dye possess the highest optical absorption in visible region. The cell sensitized with 0.8 mM N719 dye performs the highest short-circuit current density, J sc and power conversion efficiency, η since it posses the highest absorption in visible region. The DSSC utilizing 0.8 mM N719 dye demonstrated the highest J sc and η of 6.48 mA cm?2 and 1.69%, respectively.  相似文献   
28.
29.
5-Bromo-(Br-PBA) and 3,5-dibromo-2-hydroxy-N-phenylbenzamides (Br2-PBA) inhibited photosynthetic electron transport (PET) and their inhibitory efficiency depended on the compound lipophilicity as well as on the electronic properties of the R substituent in the N-phenyl moiety. Br-PBA showed higher PET inhibiting activity than Br2-PBA with the same R substituent. The most effective inhibitors in the tested series were the derivatives with R = 3-F (Br-PBA; IC50 = 4.3 μmol dm?3) and R = 3-Cl (Br2-PBA; IC50 = 8.6 μmol dm?3). Bilinear dependence of the PET inhibiting activity on the lipophilicity of the compounds as well as on the Hammett constant, σ, of the R substituent was observed for both investigated series. Using EPR spectroscopy it was found that the site of action of the tested compounds in the photosynthetic apparatus is situated on the donor side of PS 2, in D· or in the Z·/D· intermediates. Interaction of the studied compounds with chlorophyll a and aromatic amino acids present in the pigment-protein complexes mainly in photosystem 2 was documented by fluorescence spectroscopy.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号