首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   3篇
化学   75篇
晶体学   2篇
数学   2篇
物理学   4篇
  2022年   4篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   14篇
  2017年   5篇
  2016年   4篇
  2015年   1篇
  2014年   5篇
  2013年   12篇
  2012年   3篇
  2011年   6篇
  2010年   7篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   5篇
  2003年   3篇
  2002年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
41.
A systematic experimental and theoretical study of the origin of the enhanced photocatalytic performance of Mg‐doped ZnO nanoparticles (NPs) and Mg‐doped ZnO/reduced graphene oxide (rGO) nanocomposites has been performed. In addition to Mg, Cd was chosen as a doping material for the bandgap engineering of ZnO NPs, and its effects were compared with that of Mg in the photocatalytic performance of ZnO nanostructures. The experimental results revealed that Mg, as a doping material, recognizably ameliorates the photocatalytic performance of ZnO NPs and ZnO/graphene nanocomposites. Transmission electron microscopy (TEM) images showed that the Mg‐doped and Cd‐doped ZnO NPs had the same size. The optical properties of the samples indicated that Cd narrowed the bandgap, whereas Mg widened the bandgap of the ZnO NPs and the oxygen vacancy concentration was similar for both samples. Based on the experimental results, the narrowing of the bandgap, the particle size, and the oxygen vacancy did not enhance the photocatalytic performance. However, Brunauer–Emmett–Teller (BET) and Barret–Joyner–Halenda (BJH) models showed that Mg caused increased textural properties of the samples, whereas rGO played an opposite role. A theoretical study, conducted by using DFT methods, showed that the improvement in the photocatalytic performance of Mg‐doped ZnO NPs was due to a higher electron transfer from the Mg‐doped ZnO NPs to the dye molecules compared with pristine ZnO and Cd‐doped ZnO NPs. Moreover, according to the experimental results, along with Mg, graphene also played an important role in the photocatalytic performance of ZnO.  相似文献   
42.
Oxidative addition of 2‐phenylethylbromide (PhCH2CH2Br) to dimethylplatinum(II) complexes [PtMe2(NN)] ( 1a , NN = 2,2′‐bipyridine (bpy); 1b , NN = 1,10‐phenanthroline (phen)) afforded the new organoplatinum(IV) complexes [PtMe2(Br)(PhCH2CH2)(bpy)], as a mixture of trans ( 2a ) and cis ( 3a ) isomers, and [PtMe2(Br)(PhCH2CH2)(phen)], as a mixture of trans ( 2b ) and cis ( 3b ) isomers, respectively. The new Pt(IV) complexes were readily characterized using multinuclear (1H and 13C) NMR spectroscopy and elemental microanalysis. The crystal structure of 2a was further determined using X‐ray crystallography indicating an octahedral geometry around the platinum centre. A comparison of reactivity of RCH2Br reagents (R = CH3, Ph or PhCH2) in their oxidative addition reactions with complex 1a , with an emphasis on the effects of the R groups of alkyl halides, was also conducted using density functional theory.  相似文献   
43.
In this paper, several rare earth [terbium(III), ytterbium(III) and yttrium(III)] complexes containing 2,9-dimethyl-1,10-phenanthroline (Me2Phen) were successfully synthesized and characterized by means of elemental analysis (CHN), infrared spectroscopy (FT-IR), UV–vis absorption spectroscopy and 1HNMR. To explore the potential medicinal value of these complexes (MMe2Phen), their binding interactions with human serum albumin (HSA) were investigated through UV–vis and fluorescence spectroscopies and also molecular docking examinations. The thermodynamic parameters, binding forces and Förster resonance distance between these complexes and Trp-214 of HSA were estimated from the analysis of fluorescence measurements. The values of estimated binding constants (Kb) ranging for the formation of MMe2Phen:HSA complex were in the order of 105 M?1. The thermodynamic parameters determined by van’t Hoff analysis of KbH°?<?0 and ΔS°?<?0) clearly indicate the major rules of hydrogen bonds and van der Waals interactions in the formation process of MMe2Phen:HSA. The values of Stern–Volmer constant and the evaluation of dynamic quenching constant at various temperatures provided good evidences for static quenching mechanism. Furthermore, the results of molecular docking calculation and competitive binding experiments represent the binding of these complexes to site 3 of HSA located in subdomain IB, containing both polar and apolar residues. The consistency of computational and experimental results, according to the binding sites and the order of binding affinities (TbMe2Phen?>?YbMe2Phen?>?YMe2Phen), supports the accuracy of docking calculation.  相似文献   
44.
Air‐stable CuI/cryptand‐22 complex was found to be a highly active catalyst for the solvent‐free cross‐coupling reaction of terminal alkynes with different acyl chlorides in the presence of Et3N as base to give the corresponding ynones in quantitative yields.  相似文献   
45.
A silver hexacyanoferrate nanoparticles/carbon nanotubes modified glassy carbon electrode was fabricated and then successfully used for the simultaneous determination of ascorbic acid, dopamine and uric acid by cyclic voltammetry. A detailed investigation by transmission electron microscopy (TEM) and electrochemistry was performed in order to elucidate the preparation process and properties of the nanocomposites. The size of silver hexacyanoferrate nanoparticles was examined by TEM around 27 nm. Linear calibration plots were obtained over the range of 4.0 × 10−6-7.8 × 10−5, 2.4 × 10−6-1.3 × 10−4 and 2.0 × 10−6-1.5 × 10−4 mol L−1 with detection limits of 4.2 × 10−7,1.4 × 10−7 and 6.0 × 10−8 mol L−1 for ascorbic acid, dopamine and uric acid, respectively. The practical analytical utilities of the modified electrode were demonstrated by the determination of ascorbic acid, dopamine and uric acid in urine and human blood serum samples.  相似文献   
46.
In this study, a rapid flow injection-flame atomic absorption spectrometry for cyanide detection was developed. Different AgX (where X is Cl(-), Br(-), I(-) and N(3)(-)) solid-phase reagents (SPR) were tested for indirect determination of cyanide. In a single-line FIA system, the cyanide was allowed to react with AgX SPR, which in turn changed Ag ions in AgX to silver cyanide complexes in a sodium hydroxide carrier stream. The eluent containing the analyte as silver cyanide complexes was measured by FAAS. The calibration curve was linear up to 30 mg l(-1) with a detection limit of 0.05 mg l(-1) for cyanides. The sampling rate and the relative standard deviation were <1.09% and >200 h(-1), respectively. The method was applied to the determination of cyanide in electroplating wastewater.  相似文献   
47.
The characterization of an optical sensor membrane is described for indirect determination of isoniazid. The sensing membrane was consisted of immobilized 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine (PDT) on a triacetylcellulose membrane. The procedure is based on the reaction of Fe(III) with isoniazid in the presence of PDT. Fe(III) is reduced by isoniazid to Fe(II) which forms a complex with PDT. The complex shows an absorption maximum at 558nm. By measuring the absorbance of the complex at this wavelength, isoniazid can be determined in the range of 0.62-6.15mugmL(-1). This method was applied to the determination of isoniazid in pharmaceutical formulation and enabled the determination of isoniazid in microgram quantities.  相似文献   
48.
We report a simple and sensitive voltammetric sensor for the determination of chlorpromazine (CPZ) based on Ni?Al layered double hydroxide (NiAlLDH) modified glassy carbon electrode (GCE). NiAlLDH was simply electrodeposited on GCE surface in a very short time. The response linear range was 1×10?3–1×10?9 mol L?1, with a detection limit of 1×10?9 mol L?1. The NiAlLDH film showed well defined and well separate peaks for dopamine, ascorbic acid, uric acid and CPZ in the same solution. The proposed electrode was used to measure the active pharmaceutical ingredient of CPZ tablet as a real sample.  相似文献   
49.
A simple and practical strategy for the synthesis of a novel nano‐Fe3O4‐supported organocatalyst system based on 3,4‐dihydroxypyridine (Fe3O4/Py) has been developed. The prepared catalyst was characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopies, X‐ray diffraction, vibrating sample magnetometry and energy‐dispersive X‐ray analysis. Accordingly, the Fe3O4/Py nanoparticles show a superparamagnetic property with a saturation magnetization of 61 emu g?1, indicating potential application in magnetic separation technology. Our experimental results reveal that the pyridine‐functionalized Fe3O4 nanoparticles are an efficient base catalyst for the domino condensation of various aromatic aldehydes, Meldrum's acid and 5‐methylpyrazol‐3‐amine under very mild reaction condition and in the presence of ethanol solvent. Moreover, the synthesized catalyst was used for one‐pot, three‐component condensation of aromatic aldehydes with barbituric acid and malononitrile to produce 7‐amino‐2,4‐dioxo‐5‐phenyl‐2,3,4,5‐tetrahydro‐1H‐pyrano[2,3‐d]pyrimidine‐6‐carbonitriles. All reactions are completed in short times and all products are obtained in good to excellent yields. Also, notably, the catalyst was reused five times without significant degradation in catalytic activity and performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
50.
A pneumatic flow injection-tandem spectrometer system, without a delivery pump was used for the speciation of iron. In this system, the suction force of a pneumatic nebulizer of a flame absorption spectrometer was used for solution delivery through the manifold. The Fe(III) and total Fe concentrations were determined using thiocyanate ion in a UV-Vis spectrometer and a FAAS, respectively. The Fe(II) was determined by the difference. The calibration curves were linear up to 18 microg mL(-1) and 25 microg mL(-1) with detection limits of 0.09 microg mL(-1) and 0.07 microg mL(-1) for Fe(III) and Fe(II), respectively. The mid-range precision and accuracy were <2.5% and +/-3% for the two species, respectively, at a sampling rate of 120 h(-1). This system was applied for the determination of Fe(III) and Fe(II) in industrial water, natural water and spiked samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号