首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   973篇
  免费   31篇
  国内免费   6篇
化学   749篇
晶体学   6篇
力学   5篇
数学   64篇
物理学   186篇
  2023年   3篇
  2022年   6篇
  2021年   6篇
  2020年   9篇
  2019年   10篇
  2018年   8篇
  2017年   5篇
  2016年   15篇
  2015年   16篇
  2014年   32篇
  2013年   55篇
  2012年   60篇
  2011年   72篇
  2010年   39篇
  2009年   47篇
  2008年   60篇
  2007年   63篇
  2006年   57篇
  2005年   50篇
  2004年   41篇
  2003年   30篇
  2002年   41篇
  2001年   18篇
  2000年   18篇
  1999年   17篇
  1998年   12篇
  1997年   14篇
  1996年   8篇
  1995年   3篇
  1994年   10篇
  1993年   12篇
  1992年   18篇
  1991年   17篇
  1990年   12篇
  1989年   10篇
  1988年   11篇
  1987年   8篇
  1986年   7篇
  1985年   14篇
  1984年   10篇
  1983年   7篇
  1982年   6篇
  1979年   6篇
  1977年   5篇
  1976年   4篇
  1975年   6篇
  1974年   5篇
  1972年   5篇
  1970年   3篇
  1967年   4篇
排序方式: 共有1010条查询结果,搜索用时 15 毫秒
91.
Unlocking the full potential of rechargeable magnesium batteries has been partially hindered by the reliance on chloride‐based complex systems. Despite the high anodic stability of these electrolytes, they are corrosive toward metallic battery components, which reduce their practical electrochemical window. Following on our new design concept involving boron cluster anions, monocarborane CB11H12? produced the first halogen‐free, simple‐type Mg salt that is compatible with Mg metal and displays an oxidative stability surpassing that of ether solvents. Owing to its inertness and non‐corrosive nature, the Mg(CB11H12)2/tetraglyme (MMC/G4) electrolyte system permits standardized methods of high‐voltage cathode testing that uses a typical coin cell. This achievement is a turning point in the research and development of Mg electrolytes that has deep implications on realizing practical rechargeable Mg batteries.  相似文献   
92.
Since umpolung α‐imino esters contain three electrophilic centers, regioselective alkyl addition with traditional organometallic reagents has been a serious problem in the practical synthesis of versatile chiral α‐amino acid derivatives. An unusual C‐alkyl addition to α‐imino esters using a Grignard reagent (RMgX)‐derived zinc(II)ate was developed. Zinc(II)ate complexes consist of a Lewis acidic [MgX]+ moiety, a nucleophilic [R3Zn]? moiety, and 2 [MgX2]. Therefore, the ionically separated [R3Zn]? selectively attacks the imino carbon atom ,which is most strongly activated by chelation of [MgX]+. In particular, chiral β,γ‐alkynyl‐α‐imino esters can strongly promote highly regio‐ and diastereoselective C‐alkylation because of structural considerations, and the corresponding optically active α‐quaternary amino acid derivatives are obtained within 5 minutes in high to excellent yields.  相似文献   
93.
94.
Chiral metabolites are found in a wide variety of living organisms and some of them are understood to be physiologically active compounds and biomarkers. However, the overall analysis of chiral metabolomics is quite difficult due to the high number of metabolites, the significant diversity in their physicochemical properties, and concentration range from metabolite-to-metabolite. To solve this difficulty, we developed a novel approach for chiral metabolomics fingerprinting and chiral metabolomics extraction, which is based on the labeling of a pair of enantiomers of chiral derivatization reagents (i.e., DMT-(S,R)-Pro-OSu and DMT-3(S,R)-Apy) and precursor ion scan chromatography of the derivatives. The multivariate statistics is also required for this strategy. The proposed procedures were evaluated by the detection of a diagnostic marker (i.e., d-lactic acid) using the saliva of diabetic patients. This method was used for the determination of biomarker candidates of chiral amines and carboxyls in Alzheimer's disease (AD) brain homogenates. As the results, l-phenylalanine (L-Phe) and l-lactic acid (L-LA) were identified as the decreased and increased biomarker candidates in the AD brain, respectively. Therefore, the proposed approach seems to be helpful for the determination of non-target chiral metabolomics possessing amines and carboxyls.  相似文献   
95.
The adhesion process of osteoblast-like cells on hydroxyapatite (HAp) and oxidized polystyrene (PSox) was investigated using a quartz crystal microbalance with dissipation (QCM-D), confocal laser scanning microscope (CLSM), and atomic force microscope (AFM) techniques in order to clarify the interfacial phenomena between the surfaces and cells. The interfacial viscoelastic properties (shear viscosity (η(ad)), elastic shear modulus (μ(ad)), and tan δ) of the preadsorbed protein layer and the interface layer between the surfaces and cells were estimated using a Voigt-based viscoelastic model from the measured frequency (Δf) and dissipation shift (ΔD) curves. In the ΔD-Δf plots, the cell adhesion process on HAp was classified as (1) a mass increase only, (2) increases in both mass and ΔD, and (3) slight decreases in mass and ΔD. On PSox, only ΔD increases were observed, indicating that the adhesion behavior depended on the surface properties. The interfacial μ(ad) value between the material surfaces and cells increased with the number of adherent cells, whereas η(ad) and tanδ decreased slightly, irrespective of the surface. Thus, the interfacial layer changed the elasticity to viscosity with an increase in the number. The tan δ values on HAp were higher than those on PSox and exceeded 1.0. Furthermore, the pseudopod-like structures of the cells on HAp had periodic stripe patterns stained with a type I collagen antibody, whereas those on PSox had cell-membrane-like structures unstained with type I collagen. These results indicate that the interfacial layers on PSox and HAp exhibit elasticity and viscosity, respectively, indicating that the rearrangements of the extracellular matrix and cytoskeleton changes cause different cell-surface interactions. Therefore, the different cell adhesion process, interfacial viscoelasticity, and morphology depending on the surfaces were successfully monitored in situ and evaluated by the QCM-D technique combined with other techniques.  相似文献   
96.
A quartz crystal microbalance with dissipation (QCM-D) technique was employed to detecting the protein adsorption and subsequent osteoblast-like cell adhesion to hydroxyapatite (HAp) nanocrystals. The interfacial phenomena with the preadsorption of three proteins (albumin (BSA), fibronectin (Fn), and collagen (Col)), the subsequent adsorption of fetal bovine serum (FBS), and the adhesion of the cells were investigated. The QCM-D measured the frequency shift (Δf) and dissipation energy shift (ΔD), and the viscoelastic properties of the adlayers were evaluated using ΔD-Δf plot and Voigt-based viscoelastic model. The Col adsorption significantly showed higher Δf, ΔD, elasticity, and viscosity values as compared to the BSA and Fn adsorption, and the subsequent FBS adsorption depended on the preadsorbed proteins. The ΔD-Δf plot of the cell adhesion also showed a different behavior depending on the surfaces, and the Fn- and Col-modified surfaces showed the rapid mass and ΔD changes by forming the viscous interfacial layers with cell adhesion, indicating that the processes were affected by the cellular reaction through the extracellular matrix (ECM) proteins. The confocal laser scanning microscope images of adherent cells showed a different morphology and pseudopod on the surfaces. The cells adhered to the surfaces modified with the Fn and Col had significantly uniaxially expanded shapes and fibrous pseudopods, and those modified with the BSA had a round shape. Therefore, the different cell-protein interactions would cause the arrangement of the ECM and the cytoskeleton changes at the interfaces, and these phenomena were successfully detected by the QCM-D and Voigt-based model.  相似文献   
97.
The carbazoles 1 and dibenzofurans 2 having naphthalimide unit were synthesized by the cross coupling reaction of 4-bromonaphthalimide 3 with aniline and phenol derivatives followed by the intramolecular cyclization, respectively. The chromophores 1c and 2c substituted methoxy group exhibited the strong fluorescence solvatochromism.  相似文献   
98.
99.
The reactions of 2-hydroxyphenylethanone oxime (Me-H2salox) and (2-hydroxy-phenyl)-phenyl-methanone oxime (Ph-H2salox) with Mn(ClO4)2·6H2O in MeOH afford trinuclear manganese complexes of [Mn3O(Me-salox)3(MeOH)3(ClO4)]·MeOH (1·MeOH) and [Mn3O(Ph-salox)3(MeOH)3(ClO4)]·2MeOH (2·2MeOH), respectively. X-ray analysis shows that both complexes contain a manganese triangle core, [MnIII3O]7+. The structural distortion from the twisting of the oxime ligands dominates the ferromagnetic interactions within the three Mn ions in both compounds and results in an S = 6 ground state. The frequency dependence of out-of-phase signals in the alternating current (AC) magnetic susceptibility measurements and the temperature-dependent and sweep-rate-dependent hysteresis loops are indicative of single-molecule magnet behavior. Moreover, both complexes show step-wise magnetization, indicating the occurrence of quantum tunneling of magnetization (QTM). Interestingly, a tail to tail arrangement in the crystal packing of complex 1·MeOH results in strong intermolecular H-bonding interactions and leads to the exchange-bias effect from the antiferromagnetic interaction between the adjacent Mn3 molecules. In contract, QTM steps of complex 2·2MeOH show an absence of the exchange-bias effect due to a weak intermolecular interaction from a head to tail arrangement.  相似文献   
100.
This review article summarizes our recent researches for molecular design of polyoxometalates (POMs) and their related compounds for environmentally-friendly functional group transformations. The divacant POM [γ-SiW10O34(H2O)2]4− exhibits high catalytic performance for mono-oxygenation-type reactions including epoxidation of olefins and allylic alcohols, sulfoxidation, and hydroxylation of organosilanes with H2O2. We have successfully synthesized several POM-based molecular catalysts (metal-substituted POMs) with controlled active sites by the introduction of metal species into the divacant POM as a “structural motif”. These molecular catalysts can efficiently activate H2O2 (vanadium-substituted POM for epoxidation) and alkynes (copper-substituted POM for click reaction and oxidative homocoupling of alkynes). The aluminum-substituted POM exhibits Lewis acidic catalysis for diastereoselective cyclization of (+)-citronellal to (−)-isopulegol. In addition, we have developed POM-based “molecular heterogeneous catalysts” by the “solidification” and “immobilization” of catalytically active POMs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号