首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   621篇
  免费   6篇
  国内免费   4篇
化学   312篇
力学   115篇
数学   120篇
物理学   84篇
  2018年   6篇
  2015年   7篇
  2014年   8篇
  2013年   28篇
  2012年   11篇
  2011年   30篇
  2010年   11篇
  2009年   19篇
  2008年   22篇
  2007年   15篇
  2006年   16篇
  2005年   20篇
  2004年   13篇
  2003年   12篇
  2002年   22篇
  2001年   12篇
  2000年   8篇
  1999年   6篇
  1998年   8篇
  1997年   7篇
  1996年   11篇
  1995年   8篇
  1994年   15篇
  1992年   10篇
  1991年   10篇
  1990年   9篇
  1989年   7篇
  1988年   7篇
  1987年   5篇
  1986年   9篇
  1985年   9篇
  1984年   19篇
  1983年   9篇
  1982年   14篇
  1981年   7篇
  1980年   8篇
  1979年   15篇
  1978年   8篇
  1977年   12篇
  1976年   12篇
  1975年   15篇
  1974年   15篇
  1973年   22篇
  1972年   7篇
  1971年   4篇
  1970年   9篇
  1969年   8篇
  1968年   8篇
  1967年   9篇
  1965年   6篇
排序方式: 共有631条查询结果,搜索用时 15 毫秒
551.
552.
553.
554.
Using the framework of modern continuum thermomechanics, we develop sharp- and diffuse-interface theories for coherent solid-state phase transitions. These theories account for atomic diffusion and for deformation. Of essential importance in our formulation of the sharp-interface theory are a system of configurational forces and an associated configurational force balance. These forces, which are distinct from standard Newtonian forces, describe the intrinsic material structure of a body. The configurational balance, when restricted to the interface, leads to a generalization of the classical Gibbs–Thomson relation, a generalization that accounts for the orientation dependence of the interfacial energy density and also for a broad spectrum of dissipative transition kinetics. Our diffuse-interface theory involves nonstandard microforces and an associated microforce balance. These forces arise naturally from an interpretation of the atomic densities as macroscopic parameters that describe atomistic kinematics distinct from the motion of material particles. When supplemented by thermodynamically consistent constitutive relations, the microforce balance yields a generalization of the Cahn–Hilliard relation giving the chemical potentials as variational derivatives of the total free energy with respect to the atomic densities. A formal asymptotic analysis (thickness of the transition layer approaching zero) demonstrates the correspondence between versions of our theories specialized to the case of a single mobile species for situations in which the time scale for interface propagation is small compared to that for bulk diffusion. While the configurational force balance is redundant in the diffuse-interface theory, when integrated over the transition layer, the limit of this balance is the interfacial configurational force balance (i.e., generalized Gibbs–Thomson relation) of the sharp-interface theory.  相似文献   
555.

Authors Index

Author Index, Volume 57 (1999)  相似文献   
556.
The simple linear neural network model was investigated as a method for automated interpretation of infrared spectra. The model was trained using a database of infrared spectra of organic compounds of known structure. The model was able to learn, without any prior input of spectrum-structure correlations, to recognize and identify 76 functional groupings with accuracies ranging from fair to excellent. The effect of network input parameters and of training set composition were studied, and several sources of spurious correlations were identified and corrected.Dedicated to Professor W. Simon on the occasion of his 60th birthday  相似文献   
557.
Undecyl and phenyl oxazolines were synthesized. They were copolymerized in different mole ratios using methyl nosylate as initiator. A series of di- and triblock copolymers with narrow molecular weight distributions as indicated by GPC were obtained. A three-armed block copolymer was also obtained by using 1,3,5-tris(bromomethyl)benzene as initiator. When the nonpolar undecyl block crystallized as a coating, the critical surface energy approached 21.0 dyn/cm, and the contact angle of water on the surface could be higher than 107°. The melting point increased as the chain length of crystallizable undecyl block increased, and the melting peak on DSC was very sharp when the length was equal to or longer than 25 monomer units. When these copolymers were coated on substrates, the work of adhesion with pressure sensitive adhesives was greatly reduced.  相似文献   
558.
[reaction: see text] A total synthesis of (+)-aspidospermidine (1) is described. The key reactions used in the synthesis of this pentacyclic Aspidosperma alkaloid were a deracemizing imine alkylation/Robinson annulation sequence, a selective "redox ketalization", and an intramolecular Schmidt reaction. A Fischer indolization step carried out on a tricyclic ketone mirrored the sequence reported by Stork and Dolfini in their classic aspidospermine synthesis.  相似文献   
559.
Die Struktur von Tetracarbonyl(1,1,2,3,3-pentaphenyltriphosphan-P2)-eisen(0) ( I ) wurde röntgenographisch bestimmt. I kristallisiert in der Raumgruppe P1 . Es weist trigonal bipyramidale Koordination am Fe-Atom auf. Der Phosphanligand befindet sich in äquatorialer Position mit einem Fe? P? ;Abstand von 226,2(1) pm. Der mittlere Abstand Fe? C für die axial gebundenen CO-Gruppen beträgt 178,8(3) pm und unterscheidet sich nicht signifikant von dem für die äquatorial gebundenen CO-Gruppen. Die P? P? Abstände im Triphosphanliganden unterscheiden sich um 1,9 pm [225,6(2) und 223,7(1) pm]. Mit PtCl2 bildet I einen Komplex ( III ) der Zusammensetzung (CO)4FePPh(PPh2)2PtCl2, in dem die terminalen Phosphoratome an das Platin koordiniert sind und einen viergliedrigen Ring bilden. Beim Erhitzen lagert sich I unter Wanderung der Fe(CO)4-Einheit von der medialen in die terminale Position der Triphosphankette in den isomeren Komplex II um. Die Bestrahlung von I mit UV-Licht liefert als Hauptprodukte Ph2P? PPh2 und (CO)4Fe? PPhH? PPh2. Reactions of Coordinated Ligands. IX. Reactions and Molecular Structure of Tetracarbonyl(1,1,2,3,3-pentaphenyltriphosphane-P2)iron(0) – a Monosubstitution Product of Pentacarbonyliron with an Equatorial Phosphane Ligand The structure of tetracarbonyl(1,1,2,3,3-pentaphenyltriphosphane-P2)iron(0) (I) was determined by X-ray analysis. The molecule displays a trigonal-bipyramidal coordination geometry at the iron atom with the phosphane ligand in an equatorial position and an Fe? P distance of 226.2(1) pm. The average Fe? C axial distance of 178.8(3) pm is not significantly different from that of 178.0(5) pm for the average Fe? C equatorial distance. A difference of 1.9 pm is observed between the two P? P distances [225.6(2) and 223.7(1) pm]. With PtCl2 I yields a complex of composition (CO)4FePPh(Ph2P)2PtCl2 (III) in which the terminal phosphorus atoms of I are coordinated to platinum forming a four membered ring system. On heating, complex II , an isomer of I , is formed by migration of the Fe(CO)4-unit from the medial to the terminal position within the triphosphane chain. Irradiation of I with UV light affords Ph2P? PPh2 and Fe(CO)4? PPhH? PPh2 as main products.  相似文献   
560.
A new oxazoline monomer was made containing a chloroalkyl substituent which can be transformed to other functional groups by nucleophilic substitution. Oxazoline monomer containing the N-phenothiazinyl substituent was made by reacting lithiated phenothiazine with the chloroalkyl substituted oxazoline and subsequently polymerized. N,N-diethyl-6-chlorohexanamide was synthesized and N,N-diethyl-6-(10-phenothiazinyl)-hexanamide, a model compound for the phenothiazine polymer, was made by reacting lithiated phenothiazine with this chloroamide. TCNQ did not complex with the polymer. The iodine and perchlorate complexes of the phenothiazine polymer had conductivities of 4.4 × 10 ?8 and 6.9 × 10?6 S/cm, respectively, at room temperature. Each of these are higher than the corresponding values reported for complexes of the analogous model compounds or 3-substituted phenothiazine polymer reported earlier.13, 22 This was attributed to the very short chain repeat distance for the present, symmetrically substituted polymer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号