首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   4篇
化学   85篇
晶体学   1篇
力学   5篇
数学   20篇
物理学   33篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2018年   3篇
  2017年   5篇
  2016年   8篇
  2015年   7篇
  2014年   6篇
  2013年   6篇
  2012年   10篇
  2011年   8篇
  2010年   8篇
  2009年   5篇
  2008年   9篇
  2007年   6篇
  2006年   4篇
  2005年   8篇
  2004年   10篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1986年   2篇
  1984年   1篇
  1979年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
31.
In the last years, some analytical methodologies have been identified as a source of pollution, receiving increasing attention to decrease their impact on the environment. In this sense, the so-called solvent-less methodologies appear as a green alternative to reduce the volume of solvents used in many sample treatment procedures and, consequently, the volume of toxic wastes produced. Among these techniques, analytical methodologies based on liquid-phase microextraction are being continuously developed, although most applications are focused on organic compounds. In this work, a three-phase hollow-fibre liquid-phase microextraction (HF-LPME) system has been developed for the preconcentration of nickel in natural waters, prior to the analysis by atomic absorption spectrometry. Under optimum conditions, the new system allowed an enrichment factor of 29.80 to be obtained after 60 min of experiment, and it was successfully applied to the determination of nickel in both saline and non-saline water samples, at ppb and ppt levels. The results were compared with those obtained using a well-established methodology based on liquid solvent extraction showing no significant differences (α = 0.05) between both values. In addition, the new HF-LPME presents the advantages of a green analytical technique, as its greenness profile shows, with the additional reduction of sample manipulation and time cost.  相似文献   
32.
The voltammetry of nanoparticles and scanning electrochemical microscopy are applied to characterize praseodymium centers in tetragonal and monoclinic zirconias, doped with praseodymium ions (Pr x Zr1−x O2), prepared via sol–gel routes. Doped zirconia nanoparticles were synthesized by a sol–gel liquid-phase route and characterized by different techniques, including X-ray diffraction powder pattern, ultraviolet–visible diffuse reflectance spectroscopy, infrared spectroscopy, and transmission electron microscopy (TEM). Gels annealed at around 400 °C yielded tetragonal Pr x Zr1−x O2 phases. The monoclinic forms of Pr-doped ZrO2 were obtained by annealing at temperatures higher than 1,100 °C. TEM micrographs proved that the size of the nanoparticles produced was dependent on their crystalline form, around 15 and 60 nm for tetragonal and monoclinic, respectively. The electrochemical study confirmed that a relatively high content of praseodymium cation was in the chemical state (IV), i.e., as Pr4+, in both zirconia host lattices. The catalytic and photocatalytic effects of Pr4+ centers located in the monoclinic zirconia lattice on nitrite reduction and oxygen evolution reaction were studied.  相似文献   
33.
We study some properties of the quotient forcing notions ${Q_{tr(I)} = \wp(2^{< \omega})/tr(I)}$ and P I ?= B(2 ω )/I in two special cases: when I is the σ-ideal of meager sets or the σ-ideal of null sets on 2 ω . We show that the remainder forcing R I =?Q tr(I)/P I is σ-closed in these cases. We also study the cardinal invariant of the continuum ${\mathfrak{h}_{\mathbb{Q}}}$ , the distributivity number of the quotient ${Dense(\mathbb{Q})/nwd}$ , in order to show that ${\wp(\mathbb{Q})/nwd}$ collapses ${\mathfrak{c}}$ to ${\mathfrak{h}_{\mathbb{Q}}}$ , thus answering a question addressed in Balcar et?al. (Fundamenta Mathematicae 183:59–80, 2004).  相似文献   
34.
Simple, rapid and highly sensitive assays, possibly allowing on-site analysis, are required in the security and forensic fields or to obtain early signs of environmental pollution. Several bioanalytical methods and biosensors based on portable devices have been developed for this purpose. Among them, Lateral Flow ImmunoAssays (LFIAs) offer the advantages of rapidity and ease of use and, thanks to the high specificity of antigen–antibody binding, allow greatly simplifying and reducing sample pre-analytical treatments. However, LFIAs usually employ colloidal gold or latex beads as labels and they rely on the formation of colored bands visible by the naked eye. With this assay format, only qualitative or semi-quantitative information can be obtained and low sensitivity is achieved. Recently, the use of enzyme-catalyzed chemiluminescence detection in LFIA has been proposed to overcome these problems. In this work, we describe the development of a quantitative CL-LFIA assay for the detection of 2,4,6-trinitrotoluene (TNT) in real samples. Thanks to the use of a portable imaging device for CL signal measurement based on a thermoelectrically cooled CCD camera, the analysis could be performed directly on-field. A limit of detection of 0.2 μg mL−1 TNT was obtained, which is five times lower than that obtained with a previously described colloidal gold-based LFIA developed employing the same immunoreagents. The dynamic range of the assay extended up to 5 μg mL−1 TNT and recoveries ranging from 97% to 111% were obtained in the analysis of real samples (post blast residues obtained from controlled explosion).  相似文献   
35.
A method that combines the use of non-destructive neutron activation analysis and high-resolution α spectrometry has been developed for determination of the activities of 234U and 238U in geological samples of low uranium content. The 238U content is determined by k0-based neutron activation analysis, whereas the 234U/238U relationship is measured by α spectrometry after isolation and electrodeposition of the uranium extracted from a lixiviation with 6 M HCl. The main advantage of the method is the simplicity of the chemical operations, including the fact that the steps destined to assure similar chemical state for the tracer and the uranium species present in the sample are not necessary. The method was applied to soil samples from sites of the North Peru Coast. Uranium concentration range 3–40 mg/kg and the isotopic composition correspond to natural uranium, with about 10% uncertainty.  相似文献   
36.
For the compound nucleus179Au formed at an excitation energy of 26 MeV in the fusion reaction90Zr+89Y, the energy spectra of promptly emitted protons,α particles andγ rays were measured in concidence with the evaporation residues. On the basis of the measured total decay energy, the 1p and 1α decay channels were separated from all other evaporation-residue channels. The energy spectra and absolute cross sections, together with previously measured excitation functions for various decay channels, are successfully described by statisticalmodel calculations with the Monte Carlo code CODEX.  相似文献   
37.
In this work we present a very fast and parsimonious method to calculate the centre coordinates of hyperbolic components in the Mandelbrot set. The method we use constitutes an extension for the complex domain of the one developed by Myrberg for the real map x ] x2p, in which, given the symbolic sequence of a superstable orbit, the parameter value originating such a superstable orbit is worked out. We show that, when dealing with complex domain sequences, some of the solutions obtained correspond to the centres of the Mandelbrot sets hyperbolic components, while some others do not exist.  相似文献   
38.
Mauriz E  Calle A  Montoya A  Lechuga LM 《Talanta》2006,69(2):359-364
A portable surface plasmon resonance (SPR) optical biosensor device is described as a direct immunosensing system to determine organic pollutants in natural water samples. Monitoring of organochlorine (DDT), organophosphorus (chlorpyrifos) and carbamate (carbaryl) compounds within the concentration levels stipulated by the European legislation, can be accomplished using this immunosensor. The lowest limit of detection (LOD) was obtained for DDT, at 20 ng L−1, whilst 50 ng L−1 and 0.9 μg L−1, were achieved for chlorpyrifos and carbaryl, respectively. Matrix effects were evaluated for the carbaryl immunoassay in different water types with detection limits within the range of carbaryl standard curves in distilled water (0.9-1.4 μg L−1). The covalent immobilization of the analyte derivative through an alkanethiol self-assembled monolayer (SAM) allowed the reusability of the sensor surface during more than 250 regeneration cycles. The quality of the regeneration was proved over a 1-month period of continuous working. The analysis time for a complete assay cycle, including regeneration, comprises 24 min. Our portable SPR-sensor system is already a market product, commercialized by the company SENSIA, SL. The size and electronic configuration of the device allow its portability and utilization on real contaminated locations.  相似文献   
39.
This paper introduces a new Petri Net based approach for resource allocation and scheduling. The goals are (i) minimize the number of required resources given a set of jobs, (ii) find both an assignment for all jobs in the span of a predefined shift and (iii) the sequence in which such jobs are executed. The studied problem was inspired from a complex real life manufacturing shop as described in this document. The modeling of the processes and jobs is carried out with Petri Nets due to their capability of representing dynamic, concurrent discrete-event dynamic systems. The resource assignment starts with an initial feasible solution (initial number of resources) and then follows with a re-optimization process aimed to further reduce the resource requirements. The algorithm is based on a modified Heuristic Search method previously presented. The algorithm was tested first on a number of instances from the literature and then on the aforementioned system (a car seat cover manufacturer). The proposed approach shows not only good results in terms of performance but also shows the potential of Petri Nets for modeling and optimizing real-life systems. An implementation phase at the first stages of the process is underway at the time of writing.  相似文献   
40.
The interaction of atomic and molecular hydrogen with the Ag(111) surface is studied using periodic density functional total-energy calculations. This paper focuses on the site preference for adsorption, ordered structures, and energy barriers for H diffusion and H recombination. Chemisorbed H atoms are unstable with respect to the H(2) molecule in all adsorption sites below monolayer coverage. The three-hollow sites are energetically the most favorable for H chemisorption. The binding energy of H to the surface decreases slightly up to one monolayer, suggesting a small repulsive H-H interaction on nonadjacent sites. Subsurface and vacancy sites are energetically less favorable for H adsorption than on-top sites. Recombination of chemisorbed H atoms leads to the formation of gas-phase H(2) with no molecular chemisorbed state. Recombination is an exothermic process and occurs on the bridge site with a pronounced energy barrier. This energy barrier is significantly higher than that inferred from experimental temperature-programmed desorption (TPD) studies. However, there is significant permeability of H atoms through the recombination energy barrier at low temperatures, thus increasing the rate constant for H(2) desorption due to quantum tunneling effects, and improving the agreement between experiment and theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号