首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2796篇
  免费   40篇
  国内免费   6篇
化学   2011篇
晶体学   41篇
力学   52篇
数学   192篇
物理学   546篇
  2023年   18篇
  2022年   125篇
  2021年   97篇
  2020年   69篇
  2019年   70篇
  2018年   52篇
  2017年   59篇
  2016年   104篇
  2015年   85篇
  2014年   89篇
  2013年   163篇
  2012年   140篇
  2011年   188篇
  2010年   124篇
  2009年   105篇
  2008年   169篇
  2007年   129篇
  2006年   111篇
  2005年   120篇
  2004年   84篇
  2003年   65篇
  2002年   57篇
  2001年   34篇
  2000年   42篇
  1999年   20篇
  1998年   24篇
  1997年   28篇
  1996年   26篇
  1995年   32篇
  1994年   28篇
  1993年   38篇
  1992年   31篇
  1991年   12篇
  1990年   15篇
  1989年   21篇
  1988年   19篇
  1987年   16篇
  1986年   7篇
  1985年   14篇
  1984年   16篇
  1983年   10篇
  1982年   11篇
  1981年   12篇
  1980年   21篇
  1979年   18篇
  1978年   14篇
  1977年   12篇
  1976年   9篇
  1974年   7篇
  1973年   9篇
排序方式: 共有2842条查询结果,搜索用时 15 毫秒
41.
This study was performed to investigate the physical–chemical characteristics of carvedilol (CRV), complemented by compatibility studies with a great variety of pharmaceutical excipients. Thermogravimetry and differential scanning calorimetry, supported by diffuse reflectance infrared fourier transform spectroscopy (DRIFT), X-ray powder diffraction, and scanning electron microscopy (SEM) were selected as the solid-state techniques for the intended analyses. In addition, non-isothermal methods were employed to investigate kinetic data of CRV decomposition process under nitrogen and air atmospheres. CRV is characterized by an endothermic sharp event (T peak = 389.81 K and ΔH fusion of ?176.28 J g?1) and a thermal decomposition behavior in two stages, totalizing 98 % of mass loss. The CRV pattern diffraction presents prominent peaks at 2θ: 5.92°, 14.90°, 18.62°, 24.47°, and 26.30°, and the DRIFT spectrum showed the main characteristics bands for CRV chemical functional groups. The SEM photomicrographs demonstrate that CRV is characterized by irregular blocky shaped crystals. Zero order kinetics was determined by Ozawa method in both nitrogen and air atmospheres. The compatibility results showed no evidence of any incompatibility among CRV and all the excipients analyzed.  相似文献   
42.
Rhodium(II) complexes with dioximes [Rh(Hdmg)2(PPh3)]2 [I] (Hdmg=monoanion of dimethylglyoxime) and [Rh(Hdmg)(ClZndmg)(PPh3)]2 [II] catalyse hydroformylation and hydrogenation reactions of 1-hexene at 1 MPa CO/H2 and 0.5 MPa H2 at 353 K, respectively. Hydroformylation with complex [I] produces 94% of aldehydes (n/iso=2.2) and 6% 2-hexene whereas the second catalyst [II] gives ca. 40% of aldehydes (n/iso=2.1) and 60% of 2-hexene. Corresponding Rh(III) complexes are inactive in hydroformylation except of RhH(Hdmg)2(PPh3) [III], which shows activity similar to [I]. Complexes [Rh(Hdmg)2(PPh3)]2 [I], [Rh(Hdmg)(ClZndmg)(PPh3)]2 [II], RhH(Hdmg)2(PPh3) [III] and [Rh(Hdmg)2(PPh3)2]ClO4 [V] catalyse 1-hexene hydrogenation with an average TON ca. 18 cycles/mol [Rh]×min. Complex [II] has also been found to catalyse hydrogenation of cyclohexene, 1,3-cyclohexadiene and styrene.  相似文献   
43.
Based on pronounced enhancing effects in combination with other DNA-damaging agents the potentials of Ni(II), Cd(II) and As(III) to interfere with DNA repair processes in HeLa cells was investigated. With respect to oxidative DNA damage, Ni(II) and Cd(II) induced DNA strand breaks starting at concentrations of 250 μM and 5 μM, respectively. The induction of oxidative DNA base modifications like 8-hydroxyguanine was restricted to the cytotoxic concentration of 750 μM Ni(II) and not observed after treatment with Cd(II). In contrast, the removal of oxidative DNA base modifications was inhibited at concentrations as low as 50 μM Ni(II) and 0.5 μM Cd(II). Regarding nucleotide excision repair, Ni(II) and Cd(II) disturbed the DNA-protein interactions involved in the damage recognition step when applying HeLa nuclear protein extracts and a UV-damaged oligonucleotide, while As(III) inhibited the actual incision event. In the case of Ni(II) and Cd(II), this effect was reversible by the addition of Mg(II) and Zn(II), respectively. Furthermore, Cd(II) inactivated the isolated bacterial Fpg protein, most likely by the displacement of Zn(II) from its zinc finger structure. Since DNA is continuously damaged by exogenous and endogenous sources, an impaired repair capacity might well account for the carcinogenic action of the metal compounds. Received: 30 July 1997 / Revised: 6 October 1997 / Accepted: 10 October 1997  相似文献   
44.
Summary The formation of ternary complexes of the MAL3– type [where M = CuII, NiII and ZnII ; A = nitrilotriacetic acid (NTA); L = 1-hydroxy-2-naphthoic acid (1,2 HNA) and 2-hydroxy-1-naphthoic acid (2,1 HNA)] have been studied potentiometrically in 50% v/v aqueous — ethanol (25° and µ = 0.1). Under identical conditions the binary complexes of the 1,2- and 2,1-HNA ligands have also been examined. The values of mixed ligand formation constants KMAL have been found to be lower than KML (first step formation constant of binary complexes) and even less than (second step formation constant of binary complexes).  相似文献   
45.
46.
47.
    
A search for new drugs that overcome the multidrug resistance of microorganisms or are effective against cancer cells prompted us to investigate the binary and ternary Cu(II) complexes containing L-arginine, [CuCl(L-Arg)(phen)]Cl·2H2O (phen = 1,10-phenanthroline) ( 1 ) and [Cu(L-Arg)2(H2O)]C2O4·6H2O ( 2 ), for which crystal and molecular structures were characterized previously. In order to discuss the biological function, the complexes have been screened for their antitumor activity against A549 (human lung cancer cells), HepG2 (human liver hepatocellular carcinoma cells) and antimicrobial activity. To identify the complexes forms existing in the solutions of 1 and 2 crystals, the results obtained from EPR, NIR–Vis–UV and MS (mass spectrometry) measurements were correlated with those from analysis of potentiometric titration of Cu(II)―L-Arg and Cu(II)―L-Arg―phen systems. This comprehensive study indicated that the [Cu(L-Arg)(phen)]2+ and [Cu(L-Arg)2]2+ species are dominant in the solution. Complexes 1 and 2 were found to present specific ligand-dependent cytotoxic and antiproliferative potential against cancer cells. They also show antibacterial activity against Gram-positive and Gram-negative bacteria as well as display antifungal properties.  相似文献   
48.
    
Transition-metal-catalyzed cross-coupling reactions are central to many organic synthesis methodologies. Traditionally, Pd, Ni, Cu, and Fe catalysts are used to promote these reactions. Recently, many studies have showed that both homogeneous and heterogeneous Au catalysts can be used for activating selective cross-coupling reactions. Here, an overview of the past studies, current trends, and future directions in the field of gold-catalyzed coupling reactions is presented. Design strategies to accomplish selective homocoupling and cross-coupling reactions under both homogeneous and heterogeneous conditions, computational and experimental mechanistic studies, and their applications in diverse fields are critically reviewed. Specific topics covered are: oxidant-assisted and oxidant-free reactions; strain-assisted reactions; dual Au and photoredox catalysis; bimetallic synergistic reactions; mechanisms of reductive elimination processes; enzyme-mimicking Au chemistry; cluster and surface reactions; and plasmonic catalysis. In the relevant sections, theoretical and computational studies of AuI/AuIII chemistry are discussed and the predictions from the calculations are compared with the experimental observations to derive useful design strategies.  相似文献   
49.
The photophysical and photochemical properties of sulfoxide and sulfone derivatives of hemithioindigo photoswitches are scrutinized and compared to the unoxidized parent chromophores. Oxidation results in significantly blue-shifted absorptions and mostly reduction of photochromism while thermal stabilities of individual isomers remain largely unaltered. Effective photoswitching takes place at shorter wavelengths compared to parent hemithioindigos and high isomeric yields can be obtained reversibly in the respective photostationary states. Reversible solid-state photoswitching is observed for a twisted sulfone derivative accompanied by visible color changes. These results establish oxidized hemithioindigo photoswitches as promising and versatile tools for robust light-control of molecular behavior for a wide range of applications.  相似文献   
50.
A theoretical investigation on the rates of electron-transfer processes QI + QII → QI + QII and QI + QII → QI + Q2−II was carried out by using the Marcus theory of long-range electron transfer in solution. The molecular reorganizational parameter λ, the free-energy change ΔG0 for the overall reaction, and the electronic matrix element HDA for these two processes were calculated from the INDO-optimized geometries of molecules QI, QII, and histidine. QI and QII are plastoquinones (PQ) which are hydrogen-bonded to a histidine each, and the two histidines may or may not be coordinated to a Fe2+ ion. The plastoquinone representing QI is additionally flanked by two peptide fragments. Each of the species (Pep)2QI · His and His · QII has been considered to be immersed in a dielectric continuum that represents the surrounding molecules and protein folds. INDO calculations confirm the standard reduction potential for the first process (calculated 0.127 V; observed 0.13 V) and predict a midpoint potential of 0.174 V for the second process at 300 K at pH 7 (experimental value remains uncertain but is known to be close to 0.13 V). The plastoquinone fragment carries almost all the net charge (about 95.7%) in [PQ · His] and the net charge in [PQH · His]. The electron is transferred effectively from the plastoquinone part of [(Pep)2QI · His] to the plastoquinone moiety of QII · His in the first step and to the plastoquinone fragment of HisH+ · QII in the second step. Therefore, we made use of the formula for the rate of through-space electron transfer from QI to QII (and to QII). The plastoquinones are, of course, electronically coupled to histidines, and the transfer is, in reality, through the molecular bridge consisting of histidines and also Fe2+. The through-bridge effect is inherent in our calculation of ΔG0, HDA, and the reorganization parameter λ. We investigated the correlation between half-times for the transfer and (D−1opD−1s), where Dop and Ds are, respectively, optical and static dielectric constants of the condensed phase in the vicinity of the plastoquinones. We found that with reasonable values of Dop (2.6) and Ds (8.5) the experimental rates are adequately explained in terms of transfers from the plastoquinone moiety of QI to that of QII. The t1/2 values calculated for the two processes are 247 and 472 μs in the absence of Fe2+ and 134 and 181 μs in the presence of Fe2+. These are in good agreement with the observed values which are ≈ 100 and ≈ 200 μs when Fe2+ is present in the matrix and which are known to be almost twice as large when the Fe2+ is evicted from the matrix. The present work also shows that the Marcus-Hush theory of long-range electron transfers can be successfully applied to the investigation of processes occurring in a semirigid condensed phase like the thylakoid membrane region. © 1997 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号