首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   13篇
  国内免费   6篇
化学   218篇
晶体学   2篇
力学   7篇
数学   27篇
物理学   35篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   19篇
  2020年   32篇
  2019年   22篇
  2018年   8篇
  2017年   9篇
  2016年   25篇
  2015年   12篇
  2014年   17篇
  2013年   38篇
  2012年   24篇
  2011年   23篇
  2010年   7篇
  2009年   8篇
  2008年   10篇
  2007年   8篇
  2006年   5篇
  2005年   11篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有289条查询结果,搜索用时 0 毫秒
81.
One limitation of current biodegradable polymeric nanoparticles is their inability to effectively encapsulate and sustainably release proteins while maintaining protein bioactivity. Here we report the engineering of PLGA–polycation nanoparticles with a core–shell structure that act as a robust vector for the encapsulation and delivery of proteins and peptides. The optimized nanoparticles can load high amounts of proteins (>20 % of nanoparticles by weight) in aqueous solution without organic solvents through electrostatic interactions by simple mixing, thereby forming nanospheres in seconds with diameters <200 nm. The relationship between nanosphere size, surface charge, PLGA–polycation composition, and protein loading is also investigated. The stable nanosphere complexes contain multiple PLGA–polycation nanoparticles, surrounded by large amounts of protein. This study highlights a novel strategy for the delivery of proteins and other relevant molecules.  相似文献   
82.
The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.  相似文献   
83.
Different nanoporous silica materials, MCM-41, MCM-48 and SBA-15, were modified by pyridine and their applications for oral drug delivery system were evaluated. These pyridine functionalized nanoporous silicas were loaded with a water insoluble diorganotin(IV) dichloride complex as an antitumor drug model and its release from them were investigated by changing pH. An efficient pH-responsive carrier system was constructed by coordination of the pyridine group in modified nonoporous materials to tin complex. In vitro, releasing of loaded tin complex was studied in three different kinds of fluids, including a simulated gastric medium and a simulated body fluid. The loading and releasing of the diorganotin(IV) dichloride from various modified nanoporous silicas and also a non-porous silica (SiO2) were investigated, and the results were compared. In addition, the effect of some factors such as pH, time of loading and releasing were investigated through this study.  相似文献   
84.
Metal oxo clusters and metal oxides assemble and precipitate from water in processes that depend on pH, temperature, and concentration. Other parameters that influence the structure, composition, and nuclearity of “molecular” and bulk metal oxides are poorly understood, and have thus not been exploited. Herein, we show that Bi3+ drives the formation of aqueous Fe3+ clusters, usurping the role of pH. We isolated and structurally characterized a Bi/Fe cluster, Fe3BiO2(CCl3COO)8(THF)(H2O)2, and demonstrated its conversion into an iron Keggin ion capped by six Bi3+ irons ( Bi6Fe13 ). The reaction pathway was documented by X‐ray scattering and mass spectrometry. Opposing the expected trend, increased cluster nuclearity required a pH decrease instead of a pH increase. We attribute this anomalous behavior of Bi/Fe(aq) solutions to Bi3+, which drives hydrolysis and condensation. Likewise, Bi3+ stabilizes metal oxo clusters and metal oxides in strongly acidic conditions, which is important in applications such as water oxidation for energy storage.  相似文献   
85.
In this work, we first consider the discrete version of Fisher information measure and then propose Jensen–Fisher information, to develop some associated results. Next, we consider Fisher information and Bayes–Fisher information measures for mixing parameter vector of a finite mixture probability mass function and establish some results. We provide some connections between these measures with some known informational measures such as chi-square divergence, Shannon entropy, Kullback–Leibler, Jeffreys and Jensen–Shannon divergences.  相似文献   
86.
87.
Temperature‐modulated differential scanning calorimetry (TMDSC) and broadband dielectric spectroscopy (BDS) were employed to study the glass transition, size of the cooperative rearranging regions (CRRs), crystallization kinetics, and dielectric relaxation response of nanocomposites constituted by chain‐extended poly(L‐lactide) (PLLA) and carboxylated carbon nanotubes (f‐CNTs). The CRR size and the number of relaxing structural units decreased in the presence of crystals during isothermal crystallization. All samples displayed both a primary (α) and secondary (β) relaxation in BDS spectra. The relaxation dynamics of PLLA chains was barely affected by the presence of the f‐CNT. Constrained polymer chains and thickness of interphase (t i) were measured using dielectric spectra in tan δ representation. t i values were found to be 46 and 24 nm for sample containing 0.2 and 0.5% weight fraction of f‐CNT, respectively. All samples underwent partial crystallization (with roughly 30% of final crystalline fraction) some 15 or 20° above their glass‐transition temperature (T g). Crystallization leads to a fragile‐to‐strong transition in the temperature dependence of the cooperative α relaxation and to the increased visibility of a Maxwell–Wagner–Sillars (MWS) interfacial relaxation, which appears to be present in all samples. The heterogeneity of the polymeric samples was quantified in terms of a new parameter, the heterogeneity index (H). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 222–233  相似文献   
88.
A soft lithographic method is described for casting functional thermoplastic devices with microscale features without the need for specialized tools or equipment. In the thermoplastic soft lithography process, termed solvent casting, low temperature supersaturated solutions of thermoplastic are poured over solvent permeable PDMS molds which allow omnidirectional solvent removal as they template functional microstructures into the thermoplastic layers. Rapid gelation of supersaturated solutions enables the deposition of multiple patterned layers of varying composition, with self‐adhesion of the solvent‐laden thermoplastic ensuring intimate bonding between adjacent layers. This latter feature is further used in this work to realize sealed thermoplastic microfluidic devices with high fidelity replication of microchannel features with negligible channel deformation. The incorporation of functional dopants into patterned thermoplastic layers allows the fabrication of thermoplastic devices with embedded fluorescent sensors and integrated conductive elements. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1315–1323  相似文献   
89.
Montmorillonite KSF and K10 clays catalyzed effectively the reaction of methyl diazoacetate with various aldehydes using microwave irradiation under solvent-free conditions affording the corresponding β-keto esters in good yields and short reaction time. The present method is an improvement for the previous known synthetic methods and has many obvious advantages compared to them including the high efficiency, generality, high yields, operational simplicity, environmental benignity, and possibility of recycling the natural solid clays.  相似文献   
90.
A highly stereoselective method for preparing ( Z)- and ( E)-enol triflates derived from substituted acetoacetate derivatives is described. The salient feature of this methodology is the use of Schotten-Baumann-type conditions to control enolate geometry using either aqueous LiOH ( Z-selective) or aqueous (Me)(4)NOH ( E-selective) in combination with triflic anhydride to provide a practical and predictable approach to these valuable substrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号