首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1729篇
  免费   61篇
  国内免费   12篇
化学   1105篇
晶体学   44篇
力学   42篇
数学   254篇
物理学   357篇
  2023年   14篇
  2022年   32篇
  2021年   39篇
  2020年   49篇
  2019年   34篇
  2018年   37篇
  2017年   40篇
  2016年   56篇
  2015年   41篇
  2014年   60篇
  2013年   115篇
  2012年   102篇
  2011年   126篇
  2010年   61篇
  2009年   51篇
  2008年   69篇
  2007年   85篇
  2006年   78篇
  2005年   62篇
  2004年   54篇
  2003年   46篇
  2002年   41篇
  2001年   20篇
  2000年   17篇
  1999年   20篇
  1998年   11篇
  1997年   15篇
  1996年   18篇
  1995年   11篇
  1994年   16篇
  1993年   12篇
  1992年   15篇
  1991年   10篇
  1990年   12篇
  1989年   17篇
  1988年   12篇
  1987年   17篇
  1986年   11篇
  1985年   18篇
  1984年   21篇
  1983年   12篇
  1982年   9篇
  1981年   17篇
  1980年   28篇
  1979年   18篇
  1978年   17篇
  1977年   16篇
  1976年   17篇
  1975年   10篇
  1973年   8篇
排序方式: 共有1802条查询结果,搜索用时 31 毫秒
11.
Electric fields of the anions, cations and neutral forms of 2-aminopurine and 6-thioguanine have been mapped. Certain important features of the maps are similar to those found earlier in the neutral and ionic forms of adenine and guanine. The computed electric field patterns satisfactorily explain reactive sites and biological activity of the molecules.  相似文献   
12.
Mechanical, thermal, and electrical properties of graphite/PMMA composites have been evaluated as functions of particle size and dispersion of the graphitic nanofiller components via the use of three different graphitic nanofillers: “as received graphite” (ARG), “expanded graphite,” (EG) and “graphite nanoplatelets” (GNPs) EG, a graphitic materials with much lower density than ARG, was prepared from ARG flakes via an acid intercalation and thermal expansion. Subsequent sonication of EG in a liquid yielded GNPs as thin stacks of graphitic platelets with thicknesses of ~10 nm. Solution‐based processing was used to prepare PMMA composites with these three fillers. Dynamic mechanical analysis, thermal analysis, and electrical impedance measurements were carried out on the resulting composites, demonstrating that reduced particle size, high surface area, and increased surface roughness can significantly alter the graphite/polymer interface and enhance the mechanical, thermal, and electrical properties of the polymer matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2097–2112, 2007  相似文献   
13.
This article studies some geometrical aspects of the semidefinite linear complementarity problem (SDLCP), which can be viewed as a generalization of the well-known linear complementarity problem (LCP). SDLCP is a special case of a complementarity problem over a closed convex cone, where the cone considered is the closed convex cone of positive semidefinite matrices. It arises naturally in the unified formulation of a pair of primal-dual semidefinite programming problems. In this article, we introduce the notion of complementary cones in the semidefinite setting using the faces of the cone of positive semidefinite matrices and show that unlike complementary cones induced by an LCP, semidefinite complementary cones need not be closed. However, under R0-property of the linear transformation, closedness of all the semidefinite complementary cones induced by L is ensured. We also introduce the notion of a principal subtransformation with respect to a face of the cone of positive semidefinite matrices and show that for a self-adjoint linear transformation, strict copositivity is equivalent to strict semimonotonicity of each principal subtransformation. Besides the above, various other solution properties of SDLCP will be interpreted and studied geometrically.  相似文献   
14.
15.
We introduce the notion of a complementary cone and a nondegenerate linear transformation and characterize the finiteness of the solution set of a linear complementarity problem over a closed convex cone in a finite dimensional real inner product space. In addition to the above, other geometrical properties of complementary cones have been explored.  相似文献   
16.
17.
18.
19.
An electrochemical method for the measurement of NAD(+) and NADH in normal and cancer tissues using flow injection analysis (FIA) is reported. Reticulated vitreous carbon (RVC) electrodes with entrapped l-lactate dehydrogenase (LDH) and a new redox polymer containing covalently bound toluidine blue O (TBO) were employed for this purpose. Both NAD(+) and NADH were estimated coulometrically based on their reaction with LDH. The latter was immobilized on controlled pore glass (CPG) by cross-linking with glutaraldehyde and packed within the RVC. The concentrations of NAD(+) and NADH in the tissues, estimated using different electron mediators such as ferricyanide (FCN), meldola blue (MB) and TBO have also been compared. The effects of flow rate, pH, applied potential (versus Ag/AgCl reference) and adsorption of the mediators have also been investigated. Based on the measurements of NAD(+) and NADH in normal and cancer tissues it has been concluded that the NADH concentration is lower, while the NAD(+) concentration is higher in cancer tissues. Amongst the electron mediators TBO was found to be a more stable mediator for such measurements.  相似文献   
20.
[reaction: see text] Three one-pot methods for the conversion of aldehydes to homoallyl ethers catalyzed by Bi(OTf)(3).xH(2)O (1 < x < 4) have been developed. The one-pot synthesis of homoallyl ethers can be achieved either by in situ generation of the acetal followed by its reaction with allyltrialkylsilane or by a three-component synthesis in which the aldehyde, trimethylorthoformate or an alkoxytrimethylsilane and allyltrimethylsilane are mixed together in the presence of bismuth triflate (0.1-1.0 mol %). In addition, a three-component synthesis of homoallyl acetates, which is achieved by reacting the aldehyde, acetic anhydride, and allyltrimethylsilane in the presence of bismuth triflate (3.0-5.0 mol %), has been developed. The use of a relatively nontoxic, easy to handle, and inexpensive catalyst adds to the versatility of these methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号