排序方式: 共有31条查询结果,搜索用时 15 毫秒
21.
Bimolecular reactions of acetamide with acetamide itself, acetimidic acid and acetic acid are investigated to account for the formation of the three major experimental products from the pyrolysis of acetamide, namely ammonia, acetic acid and acetonitrile. This mechanism involves bimolecular deammonation reactions to form acetamide anhydride, acetic anhydride and N‐acetyl acetamide, and the subsequent fragmentation of these intermediates into acetic acid and acetonitrile. It is found that the overall reaction barrier for the formation of the three major experimental products from the bimolecular reaction of acetamide with its enol form (acetimidic acid) amount to a 36.1 kcal/mol barrier. This barrier is in excellent agreement with the corresponding experimental data from the self‐condensation of acetamide. This finding stresses on the role of acetimidic acid as a major intermediate in the pyrolysis of acetamide. The calculated activation barriers for the two available pathways in the bimolecular reaction of acetamide and acetic acid into imide and N‐acetyl acetamide (36.3 kcal/mol and 24.0 kcal/mol) is in accord with the corresponding experimental activation energy of 30.1 kcal/mol for the autocatalytic reaction of acetamide with the acetic acid. Reaction rate constants are obtained for all plausible reactions. Kinetic data presented herein should be instrumental in building a robust model for the decomposition of N‐alkylated amides, that is, a major structural entity in biomass. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
22.
A.M. Alsmadi S. Alyones C.H. Mielke R.D. McDonald V. Zapf M.M. Altarawneh A. Lacerda S. Chang S. Adak K. Kothapalli H. Nakotte 《Journal of magnetism and magnetic materials》2009,321(22):3712-3718
We performed radio-frequency (RF) skin-depth measurements of antiferromagnetic UNiX compounds (X=Al, Ga, Ge) in magnetic fields up to 60 T and at temperatures between 1.4 to ~60 K. Magnetic fields are applied along different crystallographic directions and RF penetration-depth was measured using a tunnel-diode oscillator (TDO) circuit. The sample is coupled to the inductive element of a TDO resonant tank circuit, and the shift in the resonant frequency Δf of the circuit is measured. The UNiX compounds exhibit field-induced magnetic transitions at low temperatures, and those transitions are accompanied by a drastic change in Δf. The results of our skin-depth measurements were compared with previously published B–T phase diagrams for these three compounds. 相似文献
23.
Altarawneh M Dlugogorski BZ Kennedy EM Mackie JC 《The journal of physical chemistry. A》2007,111(30):7133-7140
A density functional theory (DFT) study was carried out to investigate possible reactions of dibenzofuran (DF) and dibenzo-p-dioxin (DD) in a reducing environment. Reaction energies, barrier heights, and molecular parameters for reactants, intermediates, products, and transition states have been generated for a wide range of possible reactions. It was found that C-O beta-scission in DF incurs a very large energy barrier (107 kcal/mol at 0 K), which is just 3 kcal/mol less than the direct H fission from C-H in DF to form dibenzofuranyl radicals. It was found that DF allows direct H addition to C1-C4 and C6-C9 as well as addition of two H atoms from a hydrogen molecule at sites 1 and 9 of DF. A bimolecular reaction of DF with H or H2 is found to have a significantly lower barrier than unimolecular decomposition through C-O beta-scission. An explanation for the predominance of polychlorinated dibenzofurans (PCDF) over polychlorinated dibenzo-p-dioxins (PCDD) in municipal waste pyrolysis is presented in the view of the facile conversion of DD into DF through ipso-addition at the four C sites of the two C-O-C central bonds in DD. 相似文献
24.
Altarawneh MM Harrison N Li G Balicas L Tobash PH Ronning F Bauer ED 《Physical review letters》2012,108(6):066407
We report magnetic field orientation-dependent measurements of the superconducting upper critical field in high quality single crystals of URu(2)Si(2) and find the effective g factor estimated from the Pauli limit to agree remarkably well with that found in quantum oscillation experiments, both quantitatively and in the extreme anisotropy (≈10(3)) of the spin susceptibility. Rather than a strictly itinerant or purely local f-electron picture being applicable, the latter suggests the quasiparticles subject to pairing in URu(2)Si(2) to be "composite heavy fermions" formed from bound states between conduction electrons and local moments with a protected Ising behavior. Non-Kramers doublet local magnetic degrees of freedom suggested by the extreme anisotropy favor a local pairing mechanism. 相似文献
25.
Jomana Al-Nuairat Bogdan Z. Dlugogorski Ibukun Oluwoye Mohammednoor Altarawneh 《Proceedings of the Combustion Institute》2019,37(3):3091-3099
This contribution explores the effect of nanoparticles of iron (III) oxide (Fe2O3) on the combustion of coal surrogate, i.e., anisole, identifying the changes in ignition features as well as the occurrence of persistent organic pollutants in the initiation channels. The method applies packed-bed reactor coupled with Fourier transform infrared (FTIR) spectroscopy to quantitate the ignition temperature under typical fuel-rich conditions, in-situ electron paramagnetic resonance (EPR) to elucidate the formation of environmentally-persistent free radicals (EPFR), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to monitor the chemisorption of organic substrates on the nanoparticles, as well as X-ray diffraction for particles characterisation (PXRD). We employ cluster-based quantum mechanical calculation to map the reaction pathway within the scope of the density functional theory. The results of Fe2O3-mediated combustion of anisole depict an excessive reduction in ignition temperature from 500?°C around 220?°C at λ?=?0.8. As confirmed both from EPR and DRIFTS measurements, the chemisorption of anisole on α-Fe2O3 surfaces follows the direct dissociation of the O–CH3 (and OCH2–H), leading to the formation of surface-bound phenoxy radicals at temperatures as low as 25?°C and incurring an estimated energy barrier of Ea?=?18?kJ mol?1 and a preexponential factor of A?=?2.7?×?1012 M?1 s?1. This insight applies to free-radical chain reactions that induce spontaneous fires of coal, as coal comprises ferric oxide nanoparticles, and equally to coexistence of aromatic fuels with thermodynamically reactive Fe2O3 surface, e.g., in fly ash, at the cooled-down tail of combustion stacks. 相似文献
26.
Mansour H. Almatarneh Ismael A. Elayan Abd Al-Aziz A. Abu-Saleh Mohammednoor Altarawneh Parisa A. Ariya 《International journal of quantum chemistry》2019,119(10):e25888
The gas-phase ozonolysis reaction of methylbutenol through the Criegee mechanism is investigated. The initial reaction leads to a primary ozonide (POZ) formation with barriers in the range of 10–28 kJ mol−1. The formation of 2-hydroxy-2-methyl-propanal (HMP) and formaldehyde-oxide is more favorable, by 10 kJ mol−1, than the syn-CI and formaldehyde. The unimolecular dissociation of the more stable syn-CI via 1,5-H transfer into an epoxide is more favored than the epoxide and 3O2 formation. The ester channel led to the formation of the acetone and formic acid favorably from the anti-CI. The hydration of the anti-CI with H2O and (H2O)2 is significantly barrierless with a higher plausibility to the latter, and thus they may lead to the formation of peroxides and ultimately OH radicals, as well as airborne particulate matter. Reaction of anti-CI with water dimers enhances its atmospheric reactivity by a factor of 28 in reference to water monomers. 相似文献
27.
Mohammednoor Altarawneh Phillip V. Smith Eric M. Kennedy 《Applied Surface Science》2008,254(14):4218-4224
The interaction between a 2-chlorophenol (C6H4OHCl) molecule and the Cu(1 1 1) surface has been investigated using density functional theory as an initial step in gaining a better understanding of the catalyzed formation of dioxin compounds on a clean copper surface. The 2-chlorophenol molecule is found to form several weakly bonded, horizontally and vertically oriented configurations. Dissociative modes have also been investigated. For the latter, the formation of phenyl and benzyne fragments is found to be more energetically favourable than the formation of 2-chlorophenoxy radicals. 相似文献
28.
MM Altarawneh GW Chern N Harrison CD Batista A Uchida M Jaime DG Rickel SA Crooker CH Mielke JB Betts JF Mitchell MJ Hoch 《Physical review letters》2012,109(3):037201
We present magnetization and magnetostriction studies of LaCoO_{3} in magnetic fields approaching 100?T. In contrast with expectations from single-ion models, the data reveal two distinct first-order transitions and well-defined magnetization plateaus. The magnetization at the higher plateau is only about half the saturation value expected for spin-1 Co^{3+} ions. These findings strongly suggest collective behavior induced by interactions between different electronic configurations of Co^{3+} ions. We propose a model that predicts crystalline spin textures and a cascade of four magnetic phase transitions at high fields, of which the first two account for the experimental data. 相似文献
29.
Altarawneh M Al-Muhtaseb AH Dlugogorski BZ Kennedy EM Mackie JC 《The journal of physical chemistry. A》2010,114(43):11751-11760
Alkylated hydroxylated aromatics are major constituents of various types of fuels, including biomass and low-rank coal. In this study, thermochemical parameters are obtained for the various isomeric forms of methylbenzenediol isomers in terms of their enthalpies of formation, entropies, and heat capacities. Isodesmic work reactions are used in quantum chemical computations of the reaction enthalpies for O-H and H?C-H bond fissions and the formation of phenoxy- and benzyl-type radicals. A reaction potential energy on the singlet-state surface surface is mapped out for the unimolecular decomposition of the 3-methylbenzene-1,2-diol isomer. According to the calculated high pressure-limit reaction rate constants, concerted hydrogen molecule elimination from the methyl group and the hydroxyl group, in addition to intermolecular H migration from the hydroxyl group, dominates the unimolecular decomposition at low to intermediate temperatures (T ≤ 1200 K). At higher temperatures, O-H bond fission and concerted water elimination are expected to become the sole decomposition pathways. 相似文献
30.
Al-Muhtaseb AH Altarawneh M Almatarneh MH Poirier RA Assaf NW 《Journal of computational chemistry》2011,32(12):2708-2715
The potential energy surface for the unimolecular decomposition of thiophenol (C(6)H(5)SH) is mapped out at two theoretical levels; BB1K/GTlarge and QCISD(T)/6-311+G(2d,p)//MP2/6-31G(d,p). Calculated reaction rate constants at the high pressure limit indicate that the major initial channel is the formation of C(6)H(6)S at all temperatures. Above 1000 K, the contribution from direct fission of the S-H bond becomes important. Other decomposition channels, including expulsion of H(2) and H(2)S are of negligible importance. The formation of C(6)H(6)S is predicted to be strong-pressure dependent above 900 K. Further decomposition of C(6)H(6)S produces CS and C(5)H(6). Overall, despite the significant difference in bond dissociation, i.e., 8-9 kcal/mol between the S-H bond in thiophenol and the O-H bond in phenol, H migration at the ortho position in the two molecules represents the most accessible initial channel. 相似文献