首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   12篇
  国内免费   7篇
化学   122篇
力学   11篇
数学   33篇
物理学   45篇
  2022年   9篇
  2021年   9篇
  2020年   5篇
  2019年   12篇
  2018年   16篇
  2017年   16篇
  2016年   11篇
  2015年   8篇
  2014年   14篇
  2013年   25篇
  2012年   16篇
  2011年   20篇
  2010年   10篇
  2009年   16篇
  2008年   8篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有211条查询结果,搜索用时 392 毫秒
71.
Quantum dots (QDs) with a nanoscale size range have attracted significant attention in various areas of nanotechnology due to their unique properties. Different strategies for the synthesis of QD nanoparticles are reported in which various factors, such as size, impurities, shape, and crystallinity, affect the QDs fundamental properties. Consequently, to obtain QDs with appropriate physical properties, it is required to select a synthesis method which allows enough control over the surface chemistry of QDs through fine‐tuning of the synthesis parameters. Moreover, QDs nanocrystals are recently used in multidisciplinary research integrated with biological interfaces. The state‐of‐the‐art methods for synthesizing QDs and bioconjugation strategies to provide insight into various applications of these nanomaterials are discussed herein.  相似文献   
72.
In this study, the dynamic bifurcation of a viscoelastic micro rotating shaft is investigated. The non-classical theory (the modified couple stress theory) and the Kelvin Voigt model are used for modeling the viscoelastic micro shaft. The transverse equations of motion are derived using the variational approach. The reduced order model of the system is obtained by the Galerkin method. Using the Routh–Hurwitz criteria the stability regions of the system are extracted in which the effect of the length scale parameter is significant. Using the center manifold theory and the normal form method the double zero eigenvalue bifurcation is analyzed. The results show that the internal and external damping coefficients, the rotational speed and the material length scale parameter influence the critical speed, amplitude, and phase of a non-trivial solution, and radius of limit cycle (periodic solution). Also, it is seen that by increasing the dimensionless length scale parameter (material length scale per radius of the shaft) the radius of the limit cycle is decreased, whereas the critical rotational speed and the rate of the phase are increased. However, the radius of the limit cycle concerning the classical theory is higher than that of regarding the modified couple stress theory. Furthermore, with an increase of the external damping coefficient the radius of the limit cycle is linearly decreased; however, the critical speed of the system is increased. Additionally, by decreasing length scale parameter the results of the modified couple stress theory approach the classical theory ones.  相似文献   
73.
In this paper, the first integral method and the functional variable method are used to establish exact traveling wave solutions of the space–time fractional Schrödinger–Hirota equation and the space–time fractional modified KDV–Zakharov–Kuznetsov equation in the sense of conformable fractional derivative. The results obtained confirm that proposed methods are efficient techniques for analytic treatment of a wide variety of the space–time fractional partial differential equations.  相似文献   
74.
Poly(ether-block-amide) membranes were made via casting a solution on a nonsolvent (water) surface. In this research, effects of different parameters such as ratio of solvent mixture (n-butanol/isopropanol), temperature, composition of coagulation bath (water) and polymer concentration, on quality of the thin film membranes were studied. The mechanism of membrane formation involves solution spreading, solvent–nonsolvent exchange, and partial evaporation of the solvent steps. Solvent- nonsolvent exchange is the main step in membrane formation and determines membrane morphology. However, at higher temperature of polymeric solution greater portion of solvent evaporates. The results showed that type of demixing process (mutual affinity between solvent and nonsolvent) has important role in film formation. Also, addition of solvent to the nonsolvent bath is effective on membrane morphology. The film quality enhances with increasing isopropanol ratio in the solvent mixture. This behavior can be related to increasing of solution surface tension, reduction of interfacial tension between solution and nonsolvent and delayed solvent-nonsolvent demixing. Uniform films were made at a temperature rang of 60–80 °C and a polymer concentration of 4–7 wt%. Morphology of the membranes was investigated with scanning electron micrograph (SEM). Pervaporation of ethyl butyrate/water mixtures was studied using these membranes and high separation performance was achieved. For ethyl butyrate/water mixtures, It was observed that both permeation flux and separation factor increase with increasing ethyl butyrate content in the feed. Increasing temperature in limited range studied resulted in decreasing separation factor and increasing permeation flux.  相似文献   
75.
76.
In this study, polycrystalline α-SiC composed of 55.7?wt.% 6H-SiC, 35.1?wt.% 4H-SiC with different volume fractions of carbon fibers (0–5–10–15–20%) was successfully sintered by spark plasma sintering technique at 2000°C and 35?MPa of applied pressure. The micrographs obtained from scanning electron microscopy revealed that the sintered samples were composed of equiaxed SiC grains. Results indicated that the presence of carbon fibers retarded the SiC densification process, decreased their relative densities and increased their porosity. Additionally, according to quantitative phase analysis by the Rietveld method during the sintering step, it was found that the 6H to 4H transformation has taken place. Increasing the carbon fibers content accelerated this trend as the sample containing 20?vol.% carbon fiber was consisted of 85.5?wt.% 4H-SiC.  相似文献   
77.
78.
In this paper, after giving a criterion for a Noetherian local ring to be quasi-Gorenstein, we obtain some sufficient conditions for a quasi-Gorenstein ring to be Gorenstein. In the course, we provide a slight generalization of a theorem of Evans and Griffith. Received: 16 February 2008  相似文献   
79.
Concatenation State Machine (CSM) is a labeled directed And–Or graph representing a deterministic push-down transducer. In the high-performance version of CSM, labels associated to edges are words (rather than letters) over the input alphabet. The throughput of a path p is defined as the sum of the lengths of the labels of the path, divided by the number of edges of p. The throughput of a CSM M is defined as the infimum of the throughput of all accepting paths of M. In this paper we give an O(nmlog(maxminε)) algorithm, computing an ε-approximation of the throughput of a CSM M, where n is the number of nodes, m is the number of edges, and max (min) is the maximum (respectively, minimum) of the lengths of the edge labels of M. While we have been interested in a particular case of an And–Or graph representing a transducer, we have actually solved the following problem: if a real weight function is defined on the edges of an And–Or graph G, we compute an ε-approximation of the infimum of the complete hyper-path mean weights of G. This problem, if restricted to digraphs, is strongly connected to the problem of finding the minimum cycle mean.  相似文献   
80.
We report here the synthesis and characterization of polydiacetylene (PDA) films and nanotubes using layer-by-layer (LBL) chemistry. 10,12-Docosadiyndioic acid (DCDA) monomer was self-assembled on flat surfaces and inside of nanoporous alumina templates. UV irradiation of DCDA provided polymerized-DCDA (PDCDA) films and nanotubes. We have used zirconium-carboxylate interlayer chemistry to synthesize PDCDA multilayers on flat surfaces and in nanoporous template. PDCDA multilayers were characterized using optical (UV-vis, fluorescence, ellipsometry, FTIR) spectroscopies, ionic current-voltage ( I- V) analysis, and scanning electron microscopy. Ellipsometry, FTIR, electronic absorption and emission spectroscopies showed a uniform DCDA deposition at each deposition cycle. Our optical spectroscopic analysis indicates that carboxylate-zirconium interlinking chemistry is robust. To explain the disorganization in the alkyl portion of PDCDA multilayer films, we propose carboxylate-zirconium interlinkages act as "locks" in between PDCDA layers which restrict the movement of alkyl portion in the films. Because of this locking, the induced-stresses in the polymer chains can not be efficiently relieved. Our ionic resistance data from I- V analysis correlate well with calculated resistance at smaller number of PDCDA layers but significantly deviated for thicker PDCDA nanotubes. These differences were attributed to ion-blocking because some of the PDCDA nanotubes were totally closed and the nonohmic and permselective ionic behaviors when the diameter of the pores approaches the double-layer thickness of the solution inside of the nanotubes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号