首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5608篇
  免费   244篇
  国内免费   52篇
化学   4210篇
晶体学   42篇
力学   216篇
综合类   2篇
数学   777篇
物理学   657篇
  2024年   9篇
  2023年   43篇
  2022年   166篇
  2021年   306篇
  2020年   207篇
  2019年   230篇
  2018年   218篇
  2017年   168篇
  2016年   292篇
  2015年   202篇
  2014年   210篇
  2013年   533篇
  2012年   359篇
  2011年   383篇
  2010年   237篇
  2009年   204篇
  2008年   258篇
  2007年   259篇
  2006年   207篇
  2005年   181篇
  2004年   164篇
  2003年   140篇
  2002年   144篇
  2001年   54篇
  2000年   63篇
  1999年   44篇
  1998年   30篇
  1997年   44篇
  1996年   40篇
  1995年   32篇
  1994年   39篇
  1993年   31篇
  1992年   32篇
  1991年   28篇
  1990年   43篇
  1989年   26篇
  1988年   22篇
  1987年   26篇
  1986年   27篇
  1985年   32篇
  1984年   19篇
  1983年   17篇
  1982年   25篇
  1981年   20篇
  1980年   14篇
  1979年   16篇
  1978年   11篇
  1977年   12篇
  1976年   9篇
  1975年   6篇
排序方式: 共有5904条查询结果,搜索用时 15 毫秒
141.
The sequential extraction procedure proposed by the Standard, Measurements and Testing program "SM&T" of the European Union has been applied to evaluate the amounts of Cr, Cu, Mn, Ni, Pb and Zn, extracted at each stage and indirectly their mobility and bioavailability in soil and sediment samples from a polluted area. Analysis of the extracts was carried out by flame atomic absorption spectrometry (FAAS). No significant matrix interferences were found except for Cr in the acetic acid and hydroxylammonium chloride extracts, which required determination by the standard additions method. Both of soils and sediments studied show similar partitioning of Mn, Ni, Cu and Cr. Mn and Ni can be considered to have significant component bound to the acido-soluble fraction, whereas, Cr and Cu occur largely in the organic and residual phases. The partitioning of Pb and Zn was different between soil and sediment. In terms of mobility and bioavailability, in soils, Ni and Mn can be regarded as moderately available followed by a lower availability of Pb while Cu, Zn and Cr have a very limited availability. In sediments, a higher availability (short-medium term) of Mn and Zn was presumed followed by a lower availability of Ni and Pb, whereas, Cu and Cr, occurring largely in the organic and residual phases, were of very limited availability.  相似文献   
142.
The 4-bromo-3-phenylpyrazol-5-ylhydrazonyl chlorides (Ia,b) and 1,2,4-triazol-5-ylhydrazonyl chlorides (IIa,b) were prepared via coupling of diazotized 4-bromo-3-phenyl-5-aminopyrazole (III) and 5-amino-1,2,4-triazole (IV) with α-chloro derivatives of acetylacetone and of ethyl aceto-acetate. Compounds Ia and IIa,b were utilised for the synthesis of several new heterocyclic derivatives.  相似文献   
143.
The polymerization of acrylonitrile initiated by an ascorbic acid–peroxodisulfate redox system was studied in an aqueous solution at 35°C in the presence of air. Molecular oxygen was found to have no effect on the polymerization reaction. An increase in ionic strength slightly increased the rate. The overall rate of polymerization, Rp, showed a square dependence on [monomer] and a half-order dependence on [peroxodisulfate]. A first-order dependence on [ascorbic acid] at low concentrations (<3.0 × 10?3 mol L?1) followed by a decrease in Rp at higher concentrations of ascorbic acid (>3.0 × 10?3 mol L?1) was also noted. Rp remained unchanged up to 40°C and showed a decline thereafter. Addition of catalytic amounts of cupric ions decreased the rate whereas ferric ions were found to increase the rate. Added sulfuric acid in the range (6.0?50.0) × 10?5 mol L?1 decreased the Rp.  相似文献   
144.
An efficient method of photocatalytic degradation of methylparaben in water using Ag nanoparticles (NPs) loaded AgBr‐mesoporous‐WO3 composite photocatalyst (Ag/AgBr@m‐WO3), under visible light is presented. In this process, quantification of methylparaben in water was carried out by high‐performance liquid chromatography (HPLC) and the HPLC results showed a significant reduction of methylparaben in water due to the enhanced of photocatalytic degradation efficiency of Ag/AgBr@m‐WO3. For the material synthesis, highly ordered mesoporous‐WO3 (m‐WO3) was initially synthesized by sol–gel method and AgBr nanoparticles (NPs) were subsequently introduced in the pores of m‐WO3, and finally, the Ag nanoparticles were introduced by light irradiation. The enhanced photocatalytic degradation of methylparaben in water is attributed to the formation of surface plasmonic resonance (SPR) due to the introduction of Ag NPs on the surface of the catalyst. Also, the formation of heterojunction between AgBr and mesoporous‐WO3 in Ag/AgBr@m‐WO3 significantly inhibited the recombination of light‐induced electron‐hole pairs in the semiconductor composite. The morphological and optical characterizations of the synthesized photocatalysts (Ag/AgBr@m‐WO3) were carried out using SEM, TEM, XDR, N2 adsorption–desorption, UV‐VIS diffuse reflectance spectroscopy (DRS). Also, the photocatalytic studies using radical scavengers were carried out and the results indicated that O 2 · - is the main reactive species.  相似文献   
145.
Cycloheptyne-dicobalt hexacarbonyl complexes, substituted by propargylic ether functions, undergo 2 + 2 + 2 cycloaddition reactions with alkynes to give tricyclic benzocycloheptanes; an all-intramolecular version of this transformation is also possible.  相似文献   
146.
3β‐Hydr­oxy‐7‐drimen‐12,11‐olide hemihydrate, C15H22O3·0.5H2O, (I), has two sesquiterpene mol­ecules and one water mol­ecule in the asymmetric unit. The OH groups of both mol­ecules and both H atoms of the water mol­ecule are involved in near‐linear inter­molecular hydrogen bonds, having O⋯O distances in the range 2.632 (3)–2.791 (2) Å. 3β‐Acet­oxy‐7‐drimen‐12,11‐olide, C17H24O4, (II), has its ring system in very nearly the same conformation as the two mol­ecules of (I).  相似文献   
147.
Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 degrees C and ionic strength mu=0.1 (1M NaCl). The complexes are found to have the formulae [M(HL)2](X)n.yH2O (where M=Fe(III) (X=Cl, n=3, y=3), Co(II) (X=Cl, n=2, y=1.5), Ni(II) (X=Cl, n=2, y=1) and UO2(II) (X=NO3, n=2, y=0)) and [M(L)2] (where M=Cu(II) (X=Cl) and Zn(II) (X=AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.  相似文献   
148.
A new solid solution TlFe0.22Al0.78As2O7 has been synthesized by a solid-state reaction. The structure of the title compound has been determined from a single-crystal X-ray diffraction and refined to final values of the reliability factors: R(F2)=0.030 and wR(F2)=0.081 for 1343 independent reflections with I>2σ(I). It crystallizes in the triclinic space group P-1, with a=6.296(2) Å, b=6.397(2) Å, c=8.242(2) Å, α=96.74(2)°, β=103.78(2)°, γ=102.99(3)°, V=309.0(2) Å3 and Z=2. The structure can be described as a three-dimensional framework containing (Fe/Al)O6 octahedra connected through As2O7 groups. The metallic units and diarsenate groups share oxygen corners to form a three-dimensional framework with interconnected tunnels parallel to the a, b and c directions, where Tl+ cations are located. The ionic conductivity measurements are performed on pellets of the polycrystalline powder. At 683 K, The conductivity value is 5.23×10−6 S cm−1 and the ionic jump activation energy is 0.656 eV. The bond valence analysis reveals that the ionic conductivity is ensured by Tl+ along the [001] direction.  相似文献   
149.
A summary of the chemistry of the tetranuclear Au(I) amidinate complexes is presented. Tetranuclear Au(I) amidinate clusters are produced by the reaction of the sodium salt of a amidine ligand with the gold precursor Au(THT)Cl in a (1:1) stoichiometry. The structures of the tetranuclear Au4[ArNC(H)NAr]4, Ar = C6H4‐4‐OMe, C6H3‐3,5‐Cl, C6H4‐4‐Me, C6H4‐3‐CF3, C6F5, C10H7 and the tetranuclear Au4[(PhNC(Ph)NPh]4 and Au4[PhNC(CH3)NPh]4 have been characterized by X‐ray crystallography. The average Au···Au distance between adjacent Au(I) atoms is ?3.0 Å, typical of compounds having an aurophilic interaction. The four gold atoms are located at the corner of a rhomboid with the amidinate ligands bridged above and below the near plane of the four Au(I) atoms. The angles at Au···Au···Au in the cyclic units are between 70° and 116°. The tetranuclear gold(I) amidinate clusters each show different luminescence behavior. The tetranuclear clusters Au4[(ArNC(H)NAr]4, Ar = C6H4‐4‐OMe, Ar = C6H4‐3‐CF3, Ar = C6H4‐4‐Me and Ar = C6H4‐3,5‐Cl are the first tetranuclear gold(I) cluster species from group 11 elements that show fluorescence at room temperature. The tetranuclear naphthyl derivative Ar = C10H7 is luminescent only at 77 K. The pentafluorophenyl derivative Ar = C6F5 does not show any photoluminescence in the solid state nor in the solution. The lifetimes of the naphthyl and trifluoromethylphenyl complexes are in the millisecond range indicating phosphorescent processes. Electrochemical and chemical oxidation studies of the tetranuclear Au(I) amidinate clusters are presented. The tetranuclear complexes Au4[ArNC(H)NAr]4, Ar = C6H4‐4‐OMe, Ar = C6H4‐4‐Me, and Ar = C6H3‐3,5‐Cl, show three reversible waves at 0.75, 0.95, 1.09 V vs. Ag/AgCl at a scan rate of 500 mV/s in 0.1 M Bu4NPF6/CH2Cl2 at a Pt working electrode in CH2Cl2. Three reversible waves at 0.87, 1.19, 1.42 V vs. Ag/AgCl at a scan rate of 100 mV/s are also observed for the tetranuclear complex Au4[PhNC(Ph)NPh]4 in CH2Cl2. The pentafluorophenyl amidinate derivative, Au4[ArNC(H)NAr]4, Ar = C6F5 shows no oxidation wave below 1.8 V. Recently it has been shown that Au4[ArNC(H)NAr]4 is a very effective catalyst precursor for room temperature CO oxidation.  相似文献   
150.
The practicability and potential of comprehensive two-dimensional gas chromatography (GC x GC) coupled to both conventional flame ionisation (FID) and time-of-flight mass spectrometric (TOF-MS) detection, were compared with those of conventional one-dimensional (1D) GC, with the determination of flavour compounds in butter as an application. For polar flavour compounds, which were collected from the aqueous fraction of butter by means of solid-phase extraction (SPE), it was found that GC x GC dramatically improves the overall separation. Consequently, quantification and preliminary identification based on the use of ordered structures, can be performed more reliably. The improvement effected by replacing 1D-GC by GC x GC is considerable also in the case of TOF-MS detection, as illustrated by the high match factors generally obtained during identification. GC x GC was also used successfully for the characterisation of volatile flavour compounds in the headspace of butter collected by solid-phase microextraction (SPME) and to study the effect of heat treatment on the composition of butter samples in more detail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号