首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5608篇
  免费   244篇
  国内免费   52篇
化学   4210篇
晶体学   42篇
力学   216篇
综合类   2篇
数学   777篇
物理学   657篇
  2024年   9篇
  2023年   43篇
  2022年   166篇
  2021年   306篇
  2020年   207篇
  2019年   230篇
  2018年   218篇
  2017年   168篇
  2016年   292篇
  2015年   202篇
  2014年   210篇
  2013年   533篇
  2012年   359篇
  2011年   383篇
  2010年   237篇
  2009年   204篇
  2008年   258篇
  2007年   259篇
  2006年   207篇
  2005年   181篇
  2004年   164篇
  2003年   140篇
  2002年   144篇
  2001年   54篇
  2000年   63篇
  1999年   44篇
  1998年   30篇
  1997年   44篇
  1996年   40篇
  1995年   32篇
  1994年   39篇
  1993年   31篇
  1992年   32篇
  1991年   28篇
  1990年   43篇
  1989年   26篇
  1988年   22篇
  1987年   26篇
  1986年   27篇
  1985年   32篇
  1984年   19篇
  1983年   17篇
  1982年   25篇
  1981年   20篇
  1980年   14篇
  1979年   16篇
  1978年   11篇
  1977年   12篇
  1976年   9篇
  1975年   6篇
排序方式: 共有5904条查询结果,搜索用时 15 毫秒
171.
Two new copper(II) azido complexes, namely bis-(tetraethylammonium)[tetraazidocuprate(II)] (1) and catena-di--1,1-azido-[di--1,1-azido-bis-(2,4-dimethylpyridine)dicopper(II)] (2), have been prepared and characterized by spectroscopic and crystallographic methods. Complex (1) consists of isolated NEt+ 4 cations and [Cu(N3)4]2– anions. The site symmetry around the copper atom in the anion is 4/m. Complex (2) features a 1 D chain structure, five coordinated square pyramidal copper(II) atoms with both azides functioning as -1,1-bridges. The i.r. spectra reveal that both complexes contain asymmetric azido ligands. The solid and solution electronic spectra of (1) and (2) show very strong absorption bands in the visible region associated with N 3 CuII charge-transfer transitions. The e.p.r. spectra of powder samples and solutions at room temperature were recorded and discussed.  相似文献   
172.
Solvatochromism and Solvatofluorchromism of Brooker's merocyanine 1-methyl-4- (4′-hydroxystyryl) pyridinium betaine, M, were studied in twelve polar protic and aprotic solvents. Moderate hypsochromic fluorescence energy shifts are 4.57 kcal mole−1 while strong hypsochromic absorption energy shifts are 16.63 kcal mole−1. Decreasing of the dipole moment of M upon excitation is the factor, which is responsible for the difference between the two energy shifts. The change of both energies rectilinearly with solvent acidity scale shows the importance of oxygen atom of M as a strong basic center. The application of the atom superposition and electron delocalization molecular orbital (ASED-MO) theory reproduces geometrical and electronic structures for M, which agree well with the experimental observations. The calculations suggest strongly that the dye has a benzenoid valence structure in the ground state and shifts towards a quinonoid one upon excitation with an observed decreasing of the dipole moment. The changing of the dipole moment is explained clearly depending upon the calculated charge distribution over the whole skeleton of the molecule. The formation of a H-bond between the water molecule and the highly negative oxycyclic oxygen atom of M has slightly effect on its dipole moment in the ground state. This leads to suggest that this kind of interaction could be represented as attacking of water with acidic character on the basic site of M. Also, the calculations predict that the formation of monohydrated complex is an exothermic, down hill reaction, which is confirmed from the stabilization of the frontier molecular orbitals, oxygen lone-pair and the HOMO levels.  相似文献   
173.
The thermodynamic properties of the mixed aqueous electrolyte of ammonium and alkaline earth metal nitrates have been studied using the hygrometric method at 25?°C. The water activities of these {yNH4NO3+(1?y)Y(NO3)2}(aq) systems with Y ≡ Ba2+, Mg2+ and Ca2+ were measured at total molalities ranging from 0.10 mol?kg?1 to saturation for different NH4NO3 ionic-strength fractions of y=0.20, 0.50 and 0.80. These data allow the calculation of osmotic coefficients. From these measurements, the ionic mixing parameters are determined and used to calculate the solute activity coefficients in the mixtures at different ionic-strength fractions. The results of these ternary solution measurements are compared with those for binary solutions of the alkaline earth nitrates of magnesium, calcium and barium with ammonium nitrates. The behavior of the aqueous electrolyte solutions containing mixtures of barium or calcium or magnesium with ammonium nitrates are correlated and show that ionic interactions are more important for the system containing Mg2+ than for Ca2+ or Ba2+. The trends are mainly due to the effects of the ionic size, polarizability and the hydration of the ions in these solutions.  相似文献   
174.
Tren amine cations [(C2H4NH3)3N]3+ and zirconate or tantalate anions adopt a ternary symmetry in two hydrates, [H3tren]2·(ZrF7)2·9H2O and [H3tren]6·(ZrF7)2·(TaOF6)4·3H2O, which crystallise in R32 space group with aH = 8.871 (2) Å, cH = 38.16 (1) Å and aH = 8.758 (2) Å, cH = 30.112 (9) Å, respectively. Similar [H3tren]2·(MX7)2·H2O (M = Zr, Ta; X = F, O) sheets are found in both structures; they are separated by a water layer (Ow(2)-Ow(3)) in [H3tren]2·(ZrF7)2·9H2O. Dehydration of [H3tren]2·(ZrF7)2·9H2O starts at room temperature and ends at 90 °C to give [H3tren]2·(ZrF7)2·H2O. [H3tren]2·(ZrF7)2·H2O layers remain probably unchanged during this dehydration and the existence of one intermediate [H3tren]2·(ZrF7)2·3H2O hydrate is assumed. Ow(1) molecules are tightly hydrogen bonded with -NH3+ groups and decomposition of [H3tren]2·(ZrF7)2·H2O occurs from 210 °C to 500 °C to give successively [H3tren]2·(ZrF6)·(Zr2F12) (285 °C), an intermediate unknown phase (320 °C) and ZrF4.  相似文献   
175.
The dynamics of phase separation of three-dimensional fluids containing nanospheres, which interact preferentially with one of the two fluids, is studied by means of large-scale dissipative particle dynamics simulations. We systematically investigated the effect of volume fraction, radius, and mass of the nanoparticles on both kinetics and morphology of the binary mixture. We found that nanospheres lead to a reduction of domain growth which is intensified as their volume fraction is increased for a given radius of nanoparticles, or as the nanoparticles radius is decreased for a given volume fraction. Up to moderate volume fractions of nanoparticles, the growth law, however, is found to be identical to that pure binary fluids, i.e., R(t) approximately t(n), with n=1. For relatively high volume fractions of nanoparticles, a diffusive growth regime was detected. The crossover to the slower growth regime as the nanoparticles volume fraction is increased or their radius is decreased is associated with the crystallization of the nanospheres within the preferred component. These results are qualitatively in good agreement with previous two-dimensional simulations using molecular dynamics [M. Laradji and G. MacNevin, J. Chem. Phys. 119, 2275 (2003)] and a time-dependent Ginzburg-Landau model [M. Laradji, J. Chem. Phys. 120, 9330 (2004)], as well as recent experiments.  相似文献   
176.
The diffusion of carbon dioxide (CO2) and ethanol (EtOH) is a fundamental transport process behind the formation and growth of CO2 bubbles in sparkling beverages and the release of organoleptic compounds at the liquid free surface. In the present study, CO2 and EtOH diffusion coefficients are computed from molecular dynamics (MD) simulations and compared with experimental values derived from the Stokes-Einstein (SE) relation on the basis of viscometry experiments and hydrodynamic radii deduced from former nuclear magnetic resonance (NMR) measurements. These diffusion coefficients steadily increase with temperature and decrease as the concentration of ethanol rises. The agreement between theory and experiment is suitable for CO2. Theoretical EtOH diffusion coefficients tend to overestimate slightly experimental values, although the agreement can be improved by changing the hydrodynamic radius used to evaluate experimental diffusion coefficients. This apparent disagreement should not rely on limitations of the MD simulations nor on the approximations made to evaluate theoretical diffusion coefficients. Improvement of the molecular models, as well as additional NMR measurements on sparkling beverages at several temperatures and ethanol concentrations, would help solve this issue.  相似文献   
177.
Geometry and energetics of low energy conformers of sodium dihydrogen triacetate (SDHTA) and its anion are studied using density functional theory (DFT) at the Becke, Lee‐Yang‐Parr hybrid functional (BLYP) and Becke, three‐parameter, Lee‐Yang‐Parr hybrid functional (B3LYP) levels. For both cases, two structures of comparable energy are found, which have different symmetry with respect to the two hydrogen bonds (HBs). DFT‐based Born–Oppenheimer molecular dynamics simulations are performed for SDHTA, which show that both structures are visited at room temperature conditions. The trajectory analysis further reveals that the two HBs behave anticooperative, that is, on average elongation of one HB is accompanied by a compression of the other one. This is in accord with nuclear magnetic resonance (NMR) experimental studies for a similar counter ion–dihydrogen triacetate complex. © 2012 Wiley Periodicals, Inc.  相似文献   
178.
A new Schiff base ligand (HL) was prepared via a condensation reaction of quinoline‐2‐carboxaldhyde with 2‐aminophenol in a molar ratio of 1:1. Its transition metal mixed ligand complexes with 1,10‐phenanthroline (1,10‐phen) as co‐ligand were also synthesized in a 1:1:1 ratio. HL and its mixed ligand complexes were characterized using elemental analysis, infrared, 1H NMR, mass and UV–visible spectroscopies, molar conductance, magnetic measurements, solid reflectance, thermal analysis, electron spin resonance and X‐ray diffraction. Molar conductance measurements showed that all complexes have an electrolytic nature, except Cd(II) complex. From elemental and spectral data, the formulae [M(L)(1,10‐phen)(H2O)]Clx?nH2O (where M = Cr(III) (x = n = 2), Mn(II) and Ni(II) (x = 1, n = 2), Fe(III) (x = n = 2), Co(II), Cu(II) and Zn(II) (x = 1, n = 2)) and [Cd(L)(1,10‐phen)Cl]?3H2O for the metal complexes have been proposed. The geometric structures of complexes were found to be octahedral. Powder X‐ray diffraction reflected the crystalline nature of the complexes; however, the Schiff base is amorphous. HL and its mixed ligand complexes were screened against Gram‐positive bacteria (Streptococcus pneumoniae and Bacillus subtilis) and Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli). Antifungal activity was determined against Aspergillus fumigatus and Candida albicans, the data showing that most complexes had activity less than that of the Schiff base while Mn(II), Fe(III) and Ni(II) complexes showed no significant antifungal activity. The anticancer activity of HL and its metal complexes was also studied against breast and colon cell lines. The metal complexes showed IC50 higher than that of HL, especially the Cu(II) complex which showed the highest IC50 against breast cell line.  相似文献   
179.
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号