首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1935篇
  免费   48篇
  国内免费   6篇
化学   1181篇
晶体学   9篇
力学   45篇
数学   232篇
物理学   522篇
  2021年   15篇
  2020年   20篇
  2019年   23篇
  2017年   14篇
  2016年   35篇
  2015年   29篇
  2014年   25篇
  2013年   76篇
  2012年   75篇
  2011年   85篇
  2010年   40篇
  2009年   37篇
  2008年   85篇
  2007年   86篇
  2006年   76篇
  2005年   87篇
  2004年   86篇
  2003年   66篇
  2002年   63篇
  2001年   47篇
  2000年   60篇
  1999年   37篇
  1998年   30篇
  1997年   19篇
  1996年   41篇
  1995年   35篇
  1994年   25篇
  1993年   29篇
  1992年   44篇
  1991年   26篇
  1990年   19篇
  1989年   20篇
  1988年   34篇
  1987年   26篇
  1986年   22篇
  1985年   30篇
  1984年   19篇
  1983年   29篇
  1982年   35篇
  1981年   27篇
  1980年   24篇
  1979年   26篇
  1978年   20篇
  1977年   20篇
  1976年   27篇
  1975年   25篇
  1974年   21篇
  1973年   16篇
  1972年   9篇
  1970年   14篇
排序方式: 共有1989条查询结果,搜索用时 15 毫秒
951.
Fourier transform near infrared spectroscopy was applied to ball-milled and dried whole plant Miscanthus × giganteus samples in combination with partial least square regression analysis for prediction of main constituents of the biomass. The developed models with 172 calibration samples had an R2 in the range of 0.96–0.99. For the first time, the acetyl content was modeled for Miscanthus. An independent calibration set of 58 samples revealed a low root mean square error of prediction of 0.414 % for extractives, 0.485 % for glucan, 0.249 % for xylan, 0.061 % for arabinan, 0.050 % for acetyl, 0.198 % for Klason lignin, 0.226 % for total ash and 0.133 % for ash after extraction, an indication of a high level of accuracy. The results showed major improvement over previously reported models, which was attributed to the smaller particle size used. The models are a valuable tool for the fast monitoring of the composition of M. × giganteus in e.g. plant breeding studies.  相似文献   
952.
Ozone-induced dissociation (OzID) is an alternative ion activation method that relies on the gas phase ion-molecule reaction between a mass-selected target ion and ozone in an ion trap mass spectrometer. Herein, we evaluated the performance of OzID for both the structural elucidation and selective detection of conjugated carbon-carbon double bond motifs within lipids. The relative reactivity trends for [M + X]+ ions (where X = Li, Na, K) formed via electrospray ionization (ESI) of conjugated versus nonconjugated fatty acid methyl esters (FAMEs) were examined using two different OzID-enabled linear ion-trap mass spectrometers. Compared with nonconjugated analogues, FAMEs derived from conjugated linoleic acids were found to react up to 200 times faster and to yield characteristic radical cations. The significantly enhanced reactivity of conjugated isomers means that OzID product ions can be observed without invoking a reaction delay in the experimental sequence (i.e., trapping of ions in the presence of ozone is not required). This possibility has been exploited to undertake neutral-loss scans on a triple quadrupole mass spectrometer targeting characteristic OzID transitions. Such analyses reveal the presence of conjugated double bonds in lipids extracted from selected foodstuffs. Finally, by benchmarking of the absolute ozone concentration inside the ion trap, second order rate constants for the gas phase reactions between unsaturated organic ions and ozone were obtained. These results demonstrate a significant influence of the adducting metal on reaction rate constants in the fashion Li > Na > K.   相似文献   
953.
Filtration is an established water‐purification technology. However, due to low flow rates, the filtration of large volumes of water is often not practical. Herein, we report an alternative purification approach in which a magnetic nanoparticle composite is used to remove organic, inorganic, microbial, and microplastics pollutants from water. The composite is based on a polyoxometalate ionic liquid (POM‐IL) adsorbed onto magnetic microporous core–shell Fe2O3/SiO2 particles, giving a magnetic POM‐supported ionic liquid phase (magPOM‐SILP). Efficient, often quantitative removal of several typical surface water pollutants is reported together with facile removal of the particles using a permanent magnet. Tuning of the composite components could lead to new materials for centralized and decentralized water purification systems.  相似文献   
954.
In this work, we designed copolymer microgels by the copolymerisation of N-vinylcaprolactam (VCL) and two acrylamides (N-isopropylacrylamide (NIPAAm) and N-isopropylmethacrylamide (NIPMAAm)) under precipitation conditions in aqueous phase. In synthesis protocols, the ratio between monomers was varied from 1:5 to 5:1 mol/mol. By NMR and Raman spectroscopy, we determined the chemical composition of PVCL/NIPAAm and PVCL/NIPMAAm copolymer microgels reflecting the initial monomer ratio in the reaction mixture. The hydrodynamic radii of PVCL/NIPAAm microgels are around 375 nm (at 25 °C) and do not vary with the copolymer composition. On the contrary, for PVCL/NIPMAAm microgels, the size decreases from 450 to 250 nm with an increase of the VCL amount in copolymer structure. The heterogeneity of the microgel structure in terms of the distribution of the monomer units was probed by 1H transverse magnetization relaxation NMR, showing that the VCL, NIPAAm and NIPMAAm units are unorderly distributed in the colloidal networks. The investigation of volume phase transition temperature (VPTT) for copolymer microgels was performed using dynamic light scattering, NMR and differential scanning calorimetry. It has been found that PVCL/NIPAAm microgels show VPTT around 35 °C independently from the copolymer composition; however, PVCL/NIPMAAm particles exhibit a nonlinear increase of VPTT from 34 to 45 °C as the NIPMAAm fraction in copolymer structure increases.  相似文献   
955.
A mean field model is developed to predict how polymer–polymer miscibility changes if polymers are functionalized with noncovalent, reversibly binding endgroups. The free-energy model is based on the Flory–Huggins mixing theory and has been modified using Painter's association model to account for equilibrium self-association of endgroups. Model input parameters include the length of polymer chains, a temperature-dependent interaction parameter, and a temperature-dependent equilibrium constant for each type of associating endgroup. The analysis is applied to 12 possible blend combinations involving self-complementary interactions and seven combinations involving hetero-complementary [i.e. donor–acceptor (DA)] interactions. Combinations involve both monofunctional and telechelic associating chains. Predicted phase diagrams illustrate how self-complementary interactions can stabilize two-phase regions and how DA interactions can stabilize single phase regions. The model is a useful tool in understanding the delicate balance between the combinatorial entropy of mixing polymer chains, the repulsive interactions between dissimilar polymers, and the additional enthalpic and entropic changes due to end-group association of chain ends. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3285–3299, 2007  相似文献   
956.
By using EPR measurements of radiation-induced radicals it is possible to utilize human fingernails to estimate radiation dose after-the-fact. One of the potentially limiting factors in this approach is the presence of artifacts due to mechanically induced EPR signals (MIS) caused by mechanical stress during the collection and preparation of the samples and the so-called background (non-radiation) signal (BKS). The MIS and BKS have spectral parameters (shape, g-factor and linewidth) that overlap with the radiation-induced signal (RIS) and therefore, if not taken into account properly, could result in a considerable overestimation of the dose. We have investigated the use of different treatments of fingernails with chemical reagents to reduce the MIS and BKS. The most promising chemical treatment (20 min with 0.1 M dithiothreitol aqueous solution) reduced the contribution of MIS and BKS to the total intensity of EPR signal of irradiated fingernails by a factor of 10. This makes it potentially feasible to measure doses as low as 1 Gy almost immediately after irradiation. However, the chemical treatment reduces the intensity of the RIS and modifies dose dependence. This can be compensated by use of an appropriate calibration curve for assessment of dose. On the basis of obtained results it appears feasible to develop a field-deployable protocol that could use EPR measurements of samples of fingernails to assist in the triage of individuals with potential exposure to clinically significant doses of radiation.  相似文献   
957.
Ambient pressure CaV2O4 and high-pressure NaV2O4 crystallize in the CaFe2O4 structure type containing double chains of edge-sharing VO6 octahedra. Recent measurements on NaV2O4 reveal low-dimensional metallicity and evidence of half-metallic ferromagnetism. In contrast, CaV2O4 is an antiferromagnetic insulator. To explore the evolution of these ground-state behaviors, we have prepared a series of Ca-doped NaV2O4 compounds with the formula Na1?xCaxV2O4 (x = 0–1) using high-pressure synthesis. Samples at the Na end (x = 0–0.07) show a broad antiferromagnetic transition in the 120–160 K range in accordance with earlier reports. Transport measurements show an insulator–metal transition at x  0.2. Samples with higher Ca concentrations (x = 0.4–0.7) exhibit a metal–insulator transition around 150 K. The results for the Na1?xCaxV2O4 solid solution is discussed in comparison to existing studies at the Ca- and Na-rich ends.  相似文献   
958.
959.
The synthesis and X‐ray structure analysis of the title compound, [SnBr2(CH3)2(C4H9NO)2], are described. The crystal contains mol­ecules which are separated by normal van der Waals distances. Organotin(IV) compounds are found in a variety of structural types, in which the Sn atom can, for example, be hexacoordinated. In this case, the preferred solid‐state molecular structure of the central atom is octahedral. The degree of distortion and the configuration depend on the ligands.  相似文献   
960.
Sulfonated polyimides exhibit high strength, good film‐forming ability, chemical resistance, and, in their hydrated state, relatively high proton conductivity. Here we report the one‐pot synthesis of sulfonated polyimide‐polysiloxane segmented copolymers through the reaction of a dianhydride with a mixture of three diamines: a nonionic aromatic diamine (4,4′‐oxydianiline), a sulfonated diamine (4,4′‐diamino‐2,2′‐biphenyldisulfonic acid), and a telechelic diamino polysiloxane. Copolymer compositions were evaluated using 1H NMR and size‐exclusion chromatography. The presence of ion‐containing diamines in the reaction mixture inhibited stoichiometric incorporation of hydrophobic siloxane segments. Siloxane segments were found to lower the thermal stability of the polyimide host. Copolymers with and without siloxane segments were cast into free‐standing films. Equilibrium water sorption studies of cast films show that, for the compositions studied here, the presence of siloxane segments does not interfere with water swelling, suggesting that a microphase‐segregated morphology may exist. TEM and SAXS analyses show evidence of phase‐segregation in sulfonated polyimides and reveal that siloxane segments strongly affect ionic clustering. However, proton conductivity only changes slightly when polysiloxane segments are incorporated. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3747–3758, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号