首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   726篇
  免费   10篇
化学   397篇
晶体学   9篇
力学   10篇
数学   62篇
物理学   258篇
  2021年   6篇
  2020年   11篇
  2019年   6篇
  2018年   5篇
  2016年   8篇
  2015年   9篇
  2014年   6篇
  2013年   58篇
  2012年   17篇
  2011年   38篇
  2010年   13篇
  2009年   11篇
  2008年   35篇
  2007年   27篇
  2006年   46篇
  2005年   26篇
  2004年   28篇
  2003年   26篇
  2002年   26篇
  2001年   14篇
  2000年   7篇
  1999年   6篇
  1998年   8篇
  1997年   5篇
  1996年   4篇
  1995年   10篇
  1994年   15篇
  1993年   8篇
  1992年   15篇
  1991年   9篇
  1990年   7篇
  1989年   5篇
  1988年   12篇
  1987年   9篇
  1986年   13篇
  1985年   16篇
  1984年   5篇
  1983年   14篇
  1982年   15篇
  1981年   11篇
  1980年   15篇
  1979年   9篇
  1978年   11篇
  1977年   9篇
  1976年   12篇
  1974年   13篇
  1973年   13篇
  1972年   5篇
  1971年   6篇
  1969年   7篇
排序方式: 共有736条查询结果,搜索用时 31 毫秒
251.
The J + 1 ← J transitions (J = 2, 3, 4, 5, and 6) in the microwave spectrum of SiH3NCO have been assigned for the vibrational ground state and for the vibrational states v10 = 1, 2, and 3. The results for v10 = 0 confirm earlier work. The vibration-rotation constants show a remarkable variation with v10 and l10. To a large extent the anomalous behavior of these constants has been explained in terms of a strongly anharmonic potential function for the ν10 vibrational mode.  相似文献   
252.
Some of the dangers of the sub-optimisation which may arise when governments and private companies enter into joint ventures are illustrated in this study of the financial arrangements for construction and operation of the Channel tunnel (the project abandoned in 1975). The governments wanted the tunnel to be operated as a commercial (profit-motivated) venture, but gave the private company partners financial incentives to adopt policies in conflict with this target. The paper analyses this conflict and suggests a form of contract which retains desirable incentives but avoids the conflict of interest.  相似文献   
253.
254.
255.
256.
257.
Framework Compounds with Mobile LaIII Cations: Syntheses, Crystal Structures and Structural Dynamics of the Lanthanum(III) Iron(II) Sulfide Halides La53Fe12S90X3 (X = Cl, Br, I) Black crystals of La53Fe12S90X3 (X = Cl, Br, I) were synthesized from La2S3 and FeS in a reactive LaX3 flux at 1320 K. The structures were determined by single‐crystal X‐ray diffraction. The compounds are isostructural, crystallizing in the rhombohedral space group with Z = 1 (La53Fe12S90Cl3: a = 14.0154(7), c = 21.888(1) Å, V = 3723.5(3) Å3; La53Fe12S90Br3: a = 14.0048(9), c = 22.040(2) Å, V = 3743.6(4) Å3; La53Fe12S90I3: a = 13.9805(8), c = 22.108(2) Å, V = 3742.2(4) Å3). The structure adopted is a stuffed variant of the La52Fe12S90 structure type. [FeII2S9] dimers of face‐sharing octahedra are linked by face‐ and vertex‐sharing bi‐ or tri‐capped [LaIIIS6+n] trigonal prisms, forming a three‐dimensional framework containing cuboctahedral cavities of two sizes. The larger cavities, which remain empty in the structure of La52Fe12S90, are filled by halide ions in La53Fe12S90X3. The smaller cavities accommodate numerous sites for disordered lanthanum cations, modelling a network of diffusion pathways through the structure. An analogous picture is obtained from the calculation of the periodic nodal surface (PNS): The PNS separates a labyrinth containing the framework atoms from a labyrinth containing the mobile lanthanum cations. Molecular dynamic simulations confirm a strong coupling between the motions of the mobile lanthanum ions and the neighbouring sulfide ions.  相似文献   
258.
Asymmetric transfer hydrogenation (ATH) of ketones by formate in neat water is shown to be viable with Rh-TsDPEN and Ir-TsDPEN catalysts, derived in situ from [Cp*MCl2]2 (M=Rh, Ir) and TsDPEN. A variety of ketones were reduced, including nonfunctionalized aryl ketones, heteroaryl ketones, ketoesters, and unsaturated ketones. In comparison with Ir-TsDPEN and the related Ru II catalyst, the Rh III catalyst is most efficient in water, affording enantioselectivities of up to 99 % ee at substrate/catalyst (S/C) ratios of 100-1000 even without working under an inert atmosphere. The aqueous phase reduction is shown to be highly pH-dependent; the optimum pH windows for TOF greater than 50 mol mol(-1) h(-1) for Rh- and Ir-TsDPEN are 5.5-10.0 and 6.5-8.5, respectively. Outside the pH window, the reduction becomes slow or stagnant depending on the pH. However, the enantioselectivities erode only under acidic conditions. At a higher S/C ratio, the aqueous ATH by Rh-TsDPEN is shown to be product- as well as byproduct-inhibited; the product inhibition appears to stem at least partly from the reaction being reversible. The aqueous phase reduction is simple, efficient and environmentally benign, thus presenting a viable alternative for asymmetric reduction.  相似文献   
259.
We describe and test an implementation, using a basis set of Chebyshev polynomials, of a variational method for solving scattering problems in quantum mechanics. This minimum error method (MEM) determines the wave function Psi by minimizing the least-squares error in the function (H Psi - E Psi), where E is the desired scattering energy. We compare the MEM to an alternative, the Kohn variational principle (KVP), by solving the Secrest-Johnson model of two-dimensional inelastic scattering, which has been studied previously using the KVP and for which other numerical solutions are available. We use a conjugate gradient (CG) method to minimize the error, and by preconditioning the CG search, we are able to greatly reduce the number of iterations necessary; the method is thus faster and more stable than a matrix inversion, as is required in the KVP. Also, we avoid errors due to scattering off of the boundaries, which presents substantial problems for other methods, by matching the wave function in the interaction region to the correct asymptotic states at the specified energy; the use of Chebyshev polynomials allows this boundary condition to be implemented accurately. The use of Chebyshev polynomials allows for a rapid and accurate evaluation of the kinetic energy. This basis set is as efficient as plane waves but does not impose an artificial periodicity on the system. There are problems in surface science and molecular electronics which cannot be solved if periodicity is imposed, and the Chebyshev basis set is a good alternative in such situations.  相似文献   
260.
Progress is reported in development, implementation, and application of a spectral method for ab initio studies of the electronic structure of matter. In this approach, antisymmetry restrictions are enforced subsequent to construction of the many-electron Hamiltonian matrix in a complete orthonormal spectral-product basis. Transformation to a permutation-symmetry representation obtained from the eigenstates of the aggregate electron antisymmetrizer is seen to enforce the requirements of the Pauli principle ex post facto, and to eliminate the unphysical (non-Pauli) states spanned by the product representation. Results identical with conventional use of prior antisymmetrization of configurational state functions are obtained in applications to many-electron atoms. The development provides certain advantages over conventional methods for polyatomic molecules, and, in particular, facilitates incorporation of fragment information in the form of Hermitian matrix representatives of atomic and diatomic operators which include the non-local effects of overall electron antisymmetry. An exact atomic-pair expression is obtained in this way for polyatomic Hamiltonian matrices which avoids the ambiguities of previously described semi-empirical fragment-based methods for electronic structure calculations. Illustrative applications to the well-known low-lying doublet states of the H3 molecule in a minimal-basis-set demonstrate that the eigensurfaces of the antisymmetrizer can anticipate the structures of the more familiar energy surfaces, including the seams of intersection common in high-symmetry molecular geometries. The calculated H3 energy surfaces are found to be in good agreement with corresponding valence-bond results which include all three-center terms, and are in general accord with accurate values obtained employing conventional high-level computational-chemistry procedures. By avoiding the repeated evaluations of the many-centered one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices in the antisymmetric basis states commonly employed in conventional calculations, and by performing the required atomic and atomic-pair calculations once and for all, the spectral-product approach may provide an alternative potentially efficient ab initio formalism suitable for computational studies of adiabatic potential energy surfaces more generally. Contribution to the Mark S. Gordon 65th Birthday Festschrift Issue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号