首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4697篇
  免费   162篇
  国内免费   21篇
化学   3410篇
晶体学   36篇
力学   117篇
数学   624篇
物理学   693篇
  2023年   28篇
  2022年   49篇
  2021年   120篇
  2020年   86篇
  2019年   73篇
  2018年   64篇
  2017年   69篇
  2016年   170篇
  2015年   119篇
  2014年   127篇
  2013年   289篇
  2012年   358篇
  2011年   393篇
  2010年   213篇
  2009年   163篇
  2008年   331篇
  2007年   310篇
  2006年   263篇
  2005年   296篇
  2004年   221篇
  2003年   191篇
  2002年   162篇
  2001年   64篇
  2000年   58篇
  1999年   37篇
  1998年   43篇
  1997年   31篇
  1996年   67篇
  1995年   30篇
  1994年   31篇
  1993年   47篇
  1992年   27篇
  1991年   32篇
  1990年   36篇
  1989年   28篇
  1988年   25篇
  1987年   31篇
  1986年   15篇
  1985年   31篇
  1984年   23篇
  1983年   14篇
  1982年   21篇
  1981年   16篇
  1980年   14篇
  1979年   16篇
  1978年   9篇
  1977年   6篇
  1975年   4篇
  1974年   7篇
  1973年   5篇
排序方式: 共有4880条查询结果,搜索用时 750 毫秒
931.
Molecularly imprinted solid-phase extraction (MISPE) combined with MEKC was used for clean-up, preconcentration and determination of digoxin in the presence of its aglycon digoxin (digoxigenin) in human urine samples. In addition, the use of an in-capillary sample concentration electrophoretic technique by sweeping was investigated to enhance the concentration sensitivity in MEKC. The highly selective, fast and effective sample pretreatment by MISPE along with the preconcentration by sweeping could overcome the low sensitivity of the highly efficient capillary electrophoresis separation with UV detection. The optimization of the variables affecting the separation as well as MISPE conditions procedure was carried out to select the best conditions of selectivity and sensitivity to determine digoxin at low concentration levels in urine. To demonstrate the suitability of the developed method several analytical characteristics (selectivity, linearity, accuracy, precision, and LOD) were evaluated. Satisfactory results were obtained in terms of linearity (r > 0.99), recovery (95.4-96.5% with RSD from 1.3% to 2.6%), precision (RSD from 0.3% to 1.7% for migration times and from 2.1% to 7.3% for corrected peak areas), and sensitivity (LODs of 6 μg/L with 5 mL of sample or 1.2 μg/L with 25 mL). The proposed MISPE-MEKC method was satisfactorily applied to the analysis of spiked human urine samples achieving a concentration factor up to 7500-fold.  相似文献   
932.
In this paper, polymer foams based on a benzoxazine resin have been successfully prepared using azodicarbonamide (ADC) as a chemical blowing agent and have been characterized regarding their foaming behavior, cellular structure, and physical properties. The effect of the ADC on the curing process of the resin was analyzed using differential scanning calorimetry and blowing agent decomposition was followed by thermogravitmetric analysis (TGA). The characterization of the cellular structure of the foamed samples was done using scanning electron microscopy. The mechanical properties of the foams were determined using compression tests and the thermal conductivity was assessed using the transient plane source method. The results indicated that the curing process and gas release took place in a similar time interval. The foams showed an isotropic cellular structure with relative densities in the range 0.35–0.60, and showed compressive strengths and compressive moduli in the range of 10–70 MPa and 400–1100 MPa, respectively. Thermal conductivities were in the range of 0.06–0.12 W m?1K?1. The findings in this paper demonstrate the possibility of producing polybenzoxazine foams using a simple process in which curing and foaming take place simultaneously. In addition, the mechanical characterization of these materials indicates that they are suitable for structural applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
933.
An ab initio and Density Functional Theory (DFT) study of the conformational properties of cyclododecane was carried out. The energetically preferred equilibrium structures, their relative stability, and some of the transition state (TS) structures involved in the conformational interconversion pathways were analyzed from RHF/6‐31G(d), B3LYP/6‐31G(d,p) and B3LYP/6311++G(d,p) calculations. Aug‐cc‐pVDZ//B3LYP/6311++G(d,p) single point calculations predict that the multistep conformational interconversion mechanism requires 11.07 kcal/mol, which is in agreement with the available experimental data. These results allow us to form a concise idea about the internal intricacies of the preferred forms of cyclododecane, describing the conformations as well as the conformational interconversion processes in the conformational potential energy hypersurface. Our results indicated that performing an exhaustive analysis of the potential energy curves connecting the most representative conformations is a valid alternate tool to determine the principal conformational interconversion paths for cyclododecane. This methodology represents a satisfactory first approximation for the conformational analysis of medium‐ and large‐size flexible cyclic compounds. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   
934.
The first 3d-4f-5d heterotrimetallic complexes using [W(V)(bipy)(CN)(6)](-) as a metalloligand were synthesized (bipy = 2,2'-bipyridine). The structural and magnetic properties of three [Cu(II)Ln(III)W(V)] complexes (Ln = Gd, Ho, Tb) are discussed.  相似文献   
935.
Multifunctional materials, especially those combining two or more properties of interest, are attracting immense attention due to their potential applications. MOFs, metal organic frameworks, can be regarded as multifunctional materials if they show another useful property in addition to the adsorption behavior. Here, we report a new multifunctional light hybrid, MgH(6)ODTMP·2H(2)O(DMF)(0.5) (1), which has been synthesized using the tetraphosphonic acid H(8)ODTMP, octamethylenediamine-N,N,N',N'-tetrakis(methylenephosphonic acid), by high-throughput methodology. Its crystal structure, solved by Patterson-function direct methods from synchrotron powder X-ray diffraction, was characterized by a 3D pillared open framework containing cross-linked 1D channels filled with water and DMF. Upon H(2)O and DMF removal and subsequent rehydration, MgH(6)ODTMP·2H(2)O (2) and MgH(6)ODTMP·6H(2)O (3) can be formed. These processes take place through crystalline-quasi-amorphous-crystalline transformations, during which the integrity of the framework is maintained. A water adsorption study, at constant temperature, showed that this magnesium tetraphosphonate hybrid reversibly equilibrates its lattice water content as a function of the water partial pressure. Combination of the structural study and gas adsorption characterization (N(2), CO(2), and CH(4)) indicates an ultramicroporous framework. High-pressure CO(2) adsorption data are also reported. Finally, impedance data indicates that 3 has high proton conductivity σ = 1.6 × 10(-3) S cm(-1) at T = 292 K at ~100% relative humidity with an activation energy of 0.31 eV.  相似文献   
936.
Two novel heterobimetallic complexes of formula [Cr(bpy)(ox)(2)Co(Me(2)phen)(H(2)O)(2)][Cr(bpy)(ox)(2)]·4H(2)O (1) and [Cr(phen)(ox)(2)Mn(phen)(H(2)O)(2)][Cr(phen)(ox)(2)]·H(2)O (2) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and Me(2)phen = 2,9-dimethyl-1,10-phenanthroline) have been obtained through the "complex-as-ligand/complex-as-metal" strategy by using Ph(4)P[CrL(ox)(2)]·H(2)O (L = bpy and phen) and [ML'(H(2)O)(4)](NO(3))(2) (M = Co and Mn; L' = phen and Me(2)phen) as precursors. The X-ray crystal structures of 1 and 2 consist of bis(oxalato)chromate(III) mononuclear anions, [Cr(III)L(ox)(2)](-), and oxalato-bridged chromium(III)-cobalt(II) and chromium(III)-manganese(II) dinuclear cations, [Cr(III)L(ox)(μ-ox)M(II)L'(H(2)O)(2)](+)[M = Co, L = bpy, and L' = Me(2)phen (1); M = Mn and L = L' = phen (2)]. These oxalato-bridged Cr(III)M(II) dinuclear cationic entities of 1 and 2 result from the coordination of a [Cr(III)L(ox)(2)](-) unit through one of its two oxalato groups toward a [M(II)L'(H(2)O)(2)](2+) moiety with either a trans- (M = Co) or a cis-diaqua (M = Mn) configuration. The two distinct Cr(III) ions in 1 and 2 adopt a similar trigonally compressed octahedral geometry, while the high-spin M(II) ions exhibit an axially (M = Co) or trigonally compressed (M = Mn) octahedral geometry in 1 and 2, respectively. Variable temperature (2.0-300 K) magnetic susceptibility and variable-field (0-5.0 T) magnetization measurements for 1 and 2 reveal the presence of weak intramolecular ferromagnetic interactions between the Cr(III) (S(Cr) = 3/2) ion and the high-spin Co(II) (S(Co) = 3/2) or Mn(II) (S(Mn) = 5/2) ions across the oxalato bridge within the Cr(III)M(II) dinuclear cationic entities (M = Co and Mn) [J = +2.2 (1) and +1.2 cm(-1) (2); H = -JS(Cr)·S(M)]. Density functional electronic structure calculations for 1 and 2 support the occurrence of S = 3 Cr(III)Co(II) and S = 4 Cr(III)Mn(II) ground spin states, respectively. A simple molecular orbital analysis of the electron exchange mechanism suggests a subtle competition between individual ferro- and antiferromagnetic contributions through the σ- and/or π-type pathways of the oxalato bridge, mainly involving the d(yz)(Cr)/d(xy)(M), d(xz)(Cr)/d(xy)(M), d(x(2)-y(2))(Cr)/d(xy)(M), d(yz)(Cr)/d(xz)(M), and d(xz)(Cr)/d(yz)(M) pairs of orthogonal magnetic orbitals and the d(x(2)-y(2))(Cr)/d(x(2)-y(2))(M), d(xz)(Cr)/d(xz)(M), and d(yz)(Cr)/d(yz)(M) pairs of nonorthogonal magnetic orbitals, which would be ultimately responsible for the relative magnitude of the overall ferromagnetic coupling in 1 and 2.  相似文献   
937.
938.
Many discrete-time dynamical systems have a region Q from which all or almost all trajectories leave, or at least they leave in the presence of perturbations that we call disturbances. We partially control systems so that despite disturbances the trajectories of a dynamical system stay in the region Q at least for some initial points in Q. The disturbances can be thought of as either noise or as purposeful, hostile efforts of an enemy to drive the trajectory out of the region. Our goal is to keep trajectories inside Q despite the disturbances and our partial control of chaos method succeeds.Surprisingly this goal can be achieved with a control whose maximum allowable size is smaller than the maximum allowed disturbance. A fundamental step towards this goal is to compute a set called the safe set that had, until now, been found only in certain very special situations.This paper provides a general algorithm for computing safe sets. The algorithm is able to compute the safe sets for a specified region in phase space, the maximum disturbance value, and the maximum allowed control. We call it the Sculpting Algorithm. Its operation is analogous to removing material while sculpting a statue. The algorithm sculpts the safe sets. Our Sculpting Algorithm is independent of the dimension and is fast for one- and two-dimensional dynamical systems. As examples, we apply the algorithm to two paradigmatic nonlinear dynamical systems, namely, the Hénon map and the Duffing oscillator.  相似文献   
939.
940.
The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re c  = 104), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re c  = 104), transition effects are observed to be minor and the dynamic stall vortex system remains fairly coherent. For Re c  = 4 × 104, the dynamic-stall vortex system is laminar at is inception, however shortly afterwards, it experiences an abrupt breakdown associated with the onset of spanwise instability effects. The computed phased-averaged structures for both values of Reynolds number are found to be in good agreement with the experimental data. Finally, the effect of structural compliance on the unsteady flow past a membrane airfoil is investigated. The membrane deformation results in mean camber and large fluctuations which improve aerodynamic performance. Larger values of lift and a delay in stall are achieved relative to a rigid airfoil configuration. For Re c = 4.85 × 104, it is shown that correct prediction of the transitional process is critical to capturing the proper membrane structural response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号