首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   19篇
  国内免费   3篇
化学   355篇
力学   6篇
数学   76篇
物理学   47篇
  2023年   5篇
  2022年   17篇
  2021年   21篇
  2020年   8篇
  2019年   11篇
  2018年   6篇
  2017年   6篇
  2016年   25篇
  2015年   20篇
  2014年   10篇
  2013年   32篇
  2012年   39篇
  2011年   35篇
  2010年   23篇
  2009年   17篇
  2008年   28篇
  2007年   24篇
  2006年   20篇
  2005年   28篇
  2004年   25篇
  2003年   23篇
  2002年   21篇
  2001年   5篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1993年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1908年   1篇
排序方式: 共有484条查询结果,搜索用时 15 毫秒
471.
472.
Fiber mesh scaffolds were recently investigated in tissue engineering as possible support for stem cell growth and differentiation, in order to repair lesion areas in clinical practice. In particular, the literature is focused on fiber mesh scaffolds constituted of biocompatible and resorbable polymeric structures, like poly(l-lactic acid) (PLLA). However, as regards the study of constructs constituted of PLLA microfibers and cells, only quantitative and SEM analyses were reported, lacking histological analysis. Histological evaluation of these constructs could give important information about cellular distribution in the scaffold, cell–scaffold interactions and extracellular matrix production. The purpose of our study was to find a valid method to analyze PLLA microfiber/cell constructs from both histological and histochemical angles. Biodegradable non-woven fiber meshes were prepared using hollow microfibers, based on PLLA.We first evaluated different embedding methods useable for histological analysis and the results showed that among the paraffin, Killik, and acrylic resin the only suitable medium was the latter. Then we employed the acrylic resin to embed the constructs made up of PLLA microfibers and bone marrow-derived human mesenchymal stromal cells, which we then analyzed with Toluidine Blue, PAS and Alcian Blue staining. These constructs, previously analyzed for cell viability by MTT and CCK-8 tests, showed viable/proliferating cells until 6 weeks of culture. The stainings performed on constructs confirmed viability data obtained with SEM and MTT/CCK-8 and supplied other information on the cell behaviors such as the distribution and organization onto the scaffold and the production of extracellular matrix molecules. In conclusion, this methodological study mainly suggests a suitable method to analyze PLLA microfiber/cell constructs, at the same time confirming and enriching the literature data on the compatibility between PLLA microfibers and hMSCs.  相似文献   
473.
Enantioenriched fluorinated heterocycles can be prepared through fluorocyclizations of prochiral indoles (see scheme; Ts=tosyl, Bn=benzyl, Boc=tert-butoxycarbonyl). More than twenty examples for this cascade fluorination-cyclization, which is catalyzed by cinchona alkaloids and employs N-fluorobenzenesulfonimide as the electrophilic fluorine source have been explored, and an unprecedented catalytic asymmetric difluorocyclization has also been identified.  相似文献   
474.
Innovative strategies that utilize nanoparticles (NPs) for a better delivery of drugs and to improve their therapeutic efficacy have been widely studied in many clinical fields, including oncology. To develop safe and reliable devices able to reach their therapeutic target, a hierarchical characterization of NP interactions with biological fluids, cells, and whole organisms is fundamental. Unfortunately, this aspect is often neglected and the development of standardized characterization methods would be of fundamental help to better elucidate the potentials of nanomaterials, even before the loading of the drugs. Here, we propose a multimodal in vitro/in vivo/ex vivo platform aimed at evaluating these interactions for the selection of the most promising NPs among a wide series of materials. To set the system, we used non-degradable fluorescent poly(methyl-methacrylate) NPs of different sizes (50, 100, and 200 nm) and surface charges (positive and negative). First we studied NP stability in biological fluids. Then, we evaluated NP interaction with two cell lines of triple-negative breast cancer (TNBC), 4T1, and MDA-MB231.1833, respectively. We found that NPs internalize in TNBC cells depending on their physico-chemical properties without toxic effects. Finally, we studied NP biodistribution in terms of tissue migration and progressive clearance in breast-cancer bearing mice. The use of highly stable poly(methyl-methacrylate) NPs enabled us to track them for a long time in cells and animals. The application of this platform to other nanomaterials could provide innovative suggestions for the development of a systematic method of characterization to select the most reliable nanodrug candidates for biomedical applications.  相似文献   
475.
A product and time-resolved kinetic study on the reactivity of the radical cations generated from cyclopropyl(4-methoxyphenyl)phenylmethanol (1) and cyclopropyl[bis(4-methoxyphenyl)]methanol (2) has been carried out in aqueous solution. In acidic solution, 1*+ and 2*+ display very low reactivities toward fragmentation, consistent with the presence of groups at Calpha (aryl and cyclopropyl) that after Calpha-Cbeta bond cleavage would produce relatively unstable carbon-centered radicals. In basic solution, 1*+ and 2*+ display oxygen acidity, undergoing -OH-induced deprotonation from the alpha-OH group, leading to the corresponding 1,1-diarylalkoxyl radicals 1r* and 2r*, respectively, as directly observed by time-resolved spectroscopy. The product distributions observed in the reactions of 1*+ and 2*+ under these conditions (cyclopropyl phenyl ketone, cyclopropyl(4-methoxyphenyl) ketone, and 4-methoxybenzophenone from 1*+; cyclopropyl(4-methoxyphenyl) ketone and 4,4'-dimethoxybenzophenone from 2*+) have been rationalized in terms of a water-induced competition between O-neophyl shift and C-cyclopropyl beta-scission in the intermediate 1,1-diarylalkoxyl radicals 1r* and 2r*.  相似文献   
476.
Information, such as text printed on paper or images projected onto microfilm, can survive for over 500 years. However, the storage of digital information for time frames exceeding 50 years is challenging. Here we show that digital information can be stored on DNA and recovered without errors for considerably longer time frames. To allow for the perfect recovery of the information, we encapsulate the DNA in an inorganic matrix, and employ error‐correcting codes to correct storage‐related errors. Specifically, we translated 83 kB of information to 4991 DNA segments, each 158 nucleotides long, which were encapsulated in silica. Accelerated aging experiments were performed to measure DNA decay kinetics, which show that data can be archived on DNA for millennia under a wide range of conditions. The original information could be recovered error free, even after treating the DNA in silica at 70 °C for one week. This is thermally equivalent to storing information on DNA in central Europe for 2000 years.  相似文献   
477.
In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit‐enabled all‐atom molecular dynamics simulations (FEN ZI) with two (10,10) single‐walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse‐grained tube‐solvent surfaces, we found that tube–water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent‐like medium in the absence of water, tube–anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube–cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and interpretations of hydrophobicity in terms of alternative but parallel signatures such as interfacial fluctuations, dewetting transitions, and enhanced fluctuation probabilities at interfaces. © 2015 Wiley Periodicals, Inc.  相似文献   
478.
It is estimated that up to 50 % of the adult population take antioxidant products on a daily basis to promote their health status. Strangely, despite the well-recognized importance of antioxidants, currently there is no international standard index for labeling owing to the lack of standardized methods for antioxidant measurement in complex products. Here, an online high-performance liquid chromatography (HPLC)-based method to detect and measure the total antioxidant capacity of antioxidant samples is presented. In this approach, complex samples containing antioxidants are separated by the HPLC system, which is further coupled to an antioxidant measuring system consisting of an optical oxygen sensor, laccase, and tetramethoxy azobismethylene quinone (TMAMQ). The antioxidants, separated via HPLC, reduce TMAMQ to syringaldazine, which is then reoxidized by laccase while simultaneously consuming O2. The amount of consumed oxygen is directly proportional to the concentration of antioxidants and is measured by the optical oxygen sensor. The sensor is fabricated by coating a glass capillary with an oxygen-sensitive thin layer made of platinum(II) meso-tetra(4-fluorophenyl)tetrabenzoporphyrin and polystyrene, which makes real-time analysis possible (t 90?=?1.1 s in solution). Four selected antioxidants (3 mM), namely, catechin, ferulic acid, naringenin (used as a control), and Trolox, representing flavonol, hydrocinnamic acid, flavanone, and vitamin E, respectively, were injected into the online antioxidant monitoring system, separated, and then mixed with the TMAMQ/laccase solution, which resulted in oxygen consumption. This study shows that, with the use of such a system, the antioxidant activity of individual antioxidant molecules in a sample and their contribution to the total antioxidant activity of the sample can be correctly assigned.  相似文献   
479.
The C-C beta-scission reactions of 1-alkylcycloalkoxyl radicals, generated photochemically by visible light irradiation of CH2Cl2 solutions containing the parent 1-alkylcycloalkanols, (diacetoxy)iodobenzene (DIB), and I2, have been investigated through the analysis of the reaction products. The 1-alkylcycloalkoxyl radicals undergo competition between ring opening and C-alkyl bond cleavage as a function of ring size and of the nature of the alkyl substituent. With the 1-propylcycloheptoxyl, 1-propylcyclooctoxyl,and 1-phenylcyclooctoxyl radicals, formation of products deriving from an intramolecular 1,5-hydrogen atom abstraction reaction from the cycloalkane ring has also been observed. The results are discussed in terms of release of ring strain associated to ring opening, stability of the alkyl radical formed by C-alkyl cleavage, and with cycloheptoxyl and cyclooctoxyl radicals, also in terms of the possibility of achieving a favorable geometry for intramolecular hydrogen atom abstraction.  相似文献   
480.
Water, methanol (MeOH), acetonitrile (ACN), and binary MeOH-water and ACN-water solutions of different spin probes (nitroxides), selected to mimic the behavior of different pollutants, were adsorbed onto stationary phases usually used in reversed-phase high-performance liquid chromatography (RP-HPLC). These stationary phases are constituted by porous silica and differ from each other regarding the surface area, the pore size, the particle size, the surface functions (NH2, C8, and C18), and the percentage of functionalization. The electron paramagnetic resonance (EPR) spectra of the probe solutions adsorbed into the pores were analyzed by computer-aided computation of the spectral line shape, which provided structural and dynamical parameters of the probes and their environments. These parameters provided information on the surface properties of the stationary phases, such as alkyl chain density, solvent penetration, stationary-phase ordering, and residual silanol effects, which modify the retention times in HPLC. A different availability of polar surface groups in the pure and mixed solvents was found for the different stationary phases depending on (1) the different functionalization degree, (2) the surface-chain length, (3) the particle size, and (4) the polarity of both the probe and the solvent. The C8 functionalization rendered the surface more hydrophobic with respect to C18. The endcapping process of the residual silanols strongly enhanced the surface hydrophobicity tested by the probes. At the highest water content, the adsorption of the polar or charged probes onto the hydrophobic surface is the lowest and self-aggregation occurs. When the probes bear both hydrophilic and hydrophobic moieties, the adsorption is enhanced by a synergy between hydrophilic and hydrophobic bonds with the surface. A balance between the hydrophilic and hydrophobic forces leads to high adsorption and partial insertion of the surfactant probes in an ordered C18 chain layer at the solid surface which forms in the binary mixtures; this layer is ascertained between 40% and 70% of the less hydrophilic solvent, depending on the type of both the solid and the probe. This insertion and the response on the formation of the ordered layer were favored in ACN-water with respect to MeOH-water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号