首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   704篇
  免费   34篇
化学   620篇
晶体学   6篇
力学   8篇
数学   43篇
物理学   61篇
  2023年   10篇
  2022年   11篇
  2021年   18篇
  2020年   19篇
  2019年   18篇
  2018年   10篇
  2017年   13篇
  2016年   27篇
  2015年   31篇
  2014年   25篇
  2013年   47篇
  2012年   37篇
  2011年   53篇
  2010年   34篇
  2009年   23篇
  2008年   35篇
  2007年   31篇
  2006年   25篇
  2005年   34篇
  2004年   28篇
  2003年   24篇
  2002年   22篇
  2001年   3篇
  2000年   10篇
  1999年   9篇
  1997年   4篇
  1996年   15篇
  1995年   5篇
  1994年   7篇
  1993年   8篇
  1992年   9篇
  1991年   5篇
  1989年   6篇
  1988年   4篇
  1987年   4篇
  1984年   6篇
  1983年   8篇
  1982年   3篇
  1980年   4篇
  1975年   2篇
  1974年   4篇
  1973年   5篇
  1972年   2篇
  1970年   2篇
  1969年   2篇
  1968年   4篇
  1967年   2篇
  1966年   2篇
  1901年   2篇
  1889年   2篇
排序方式: 共有738条查询结果,搜索用时 15 毫秒
21.
Losod, a new type of crystalline hydrated sodium aluminosilicate, Na12Al12Si12O48 · q H2O, has been prepared from reaction mixtures containing bulky quaternary alkylammonium ions, particularly azonia-spiro[4.4]nonane, besides sodium ions. Losod crystallizes from batches with a low sodium content (Na/Al ≤ 1 and Si/Al ≈? 1). The quaternary ammonium hydroxide primarily serves as a source of hydroxide ions and is not incorporated into the zeolite crystals. These bulky bases provide a useful means for controlling the alkalinity of the system independently of the concentration of the necessary cations built into the zeolite. The crystals of Losod are hexagonal (a = 12.91 and c = 10.54 Å) and the proposed framework structure shows a polytypic relationship to sodalite and cancrinite. Losod has reversible sorption and ion exchange properties typical of a small-pore zeolite and in essential agreement with the proposed structure.  相似文献   
22.
MC540-mediated photolysis has several features that make it potentially attractive as a clinical purging procedure. (1) The experience with experimental tumors suggests that MC540-mediated photolysis is effective against a broad range of leukemias and solid tumors, including drug-resistant tumors (Sieber et al., 1984b). Drug-resistant tumor cells are likely to occur in heavily pretreated patients. (2) MC540-mediated photolysis is not cell-cycle dependent (Manna and Sieber, 1985). It kills both resting and cycling cells. In this regard, MC540-mediated photolysis is a valuable complement to cell-cycle specific cytotoxic drugs. (3) There is a large differential in sensitivity between normal pluripotent hematopoietic stem cells and leukemia and neuroblastoma cells. (4) The mechanism of action of MC540-mediated photolysis is different from that of lectins, antibodies and most cytotoxic drugs. MC540 binds to the lipid portion of the plasma membrane and membrane lipids are probably a primary target of the toxic photoproducts. Antibodies and lectins react with proteins and carbohydrates and most drugs have intracellular targets (e.g., nuclear DNA). We would therefore expect little cross-resistance if MC540-mediated photolysis were used in combination with other purging procedures.(5) The small amounts of dye that remain associated with the marrow graft and are infused into the patient are approximately 100,000-fold less than the LD(10) (in mice) and therefore unlikely to cause any harm. The outcome of the first clinical application of the technique supports this view (Sieber et al., 1986c). A better understanding of the underlying molecular mechanisms will undoubtedly lead to more effective applications of the technique and perhaps to the identification of more potent analogs of MC540.  相似文献   
23.
24.
25.
Normal hematopoietic progenitor cells from 129S6/SvEv mice are substantially less sensitive to Merocyanine 540 (MC540)-mediated photodynamic therapy (PDT) than hematopoietic progenitors from sex- and age-matched C57BL/6 mice. When exposed to a combination of MC540 and light commonly used for the extracorporeal purging of hematopoietic stem cells, granulocyte/macrophage progenitors (CFU-GM) from C57BL/6 mice are depleted 7.9-fold whereas CFU-GM from 129S6/SvEv and (C57BL/6 x 129S6/SvEv) F1 mice are depleted 1.4- and 2-fold, respectively. The same rank order of sensitivity is also found with regard to unipotent progenitors of granulocytes and macrophages and with regard to early and late erythroid progenitors. The resistance of hematopoietic progenitors from 129S6/SvEv mice to MC540-PDT appears to be the result of reduced dye binding rather than the result of high levels of intracellular glutathione. These findings have practical implications for the design of preclinical tests of PDT in animal models. They may also provide a useful tool for future investigations into the molecular determinants of sensitivity to MC540-PDT.  相似文献   
26.
The conformers of the monohalocyclohexasilanes, Si6H11X (X=F, Cl, Br or I) and the haloundecamethylcyclohexasilanes, Si6Me11X (X=F, Cl, Br or I) are investigated by DFT calculations employing the B3LYP density functional and 6‐31+G* basis sets for elements up to the third row, and SDD basis sets for heavier elements. Five minima are found for Si6H11X—the axial and equatorial chair conformers, with the substituent X either in an axial or equatorial position—and another three twisted structures. The equatorial chair conformer is the global minimum for the X=Cl, Br and I, the axial chair for X=F. The barrier for the ring inversion is ~13 kJ mol?1 for all four compounds. Five minima closely related to those of Si6H11X are found for Si6Me11X. Again, the equatorial chair is the global minimum for X=Cl, Br and I, and the axial chair for X=F. Additionally, two symmetrical boat conformers are found as local minima on the potential energy surfaces for X=F, Cl and Br, but not for X=I. The barrier for the ring inversion is ~14–16 kJ mol?1 for all compounds. The conformational equilibria for Si6Me11X in toluene solution are investigated using temperature dependent Raman spectroscopy. The wavenumber range of the stretching vibrations of the heavy atoms X and Si from 270–370 cm?1 is analyzed. Using the van′t Hoff relationship, the enthalpy differences between axial and equatorial chair conformers (Hax?Heq.) are 1.1 kJ mol?1 for X=F, and 1.8 to 2.8 kJ mol?1 for X=Cl, Br and I. Due to rapid interconversion, only a single Raman band originating from the “averaged” twist and boat conformers could be observed. Generally, reasonable agreement between the calculated relative energies and the experimentally determined values is found.  相似文献   
27.
Nine members of a new family of polynuclear ferric complexes have been synthesized and characterized. The reaction of Fe(O(2)CMe)(2) with polydentate Schiff base proligands (H(2)L) derived from salicylidene-2-ethanolamine, followed in some cases by reaction with carboxylic acids, has afforded new complexes of general formulas [Fe(2)(pic)(2)(L)(2)] (where pic(-) is the anion of 2-picolinic acid), [Fe(3)(O(2)CMe)(3)(L)(3)], [Fe(4)(OR)(2)(O(2)CMe)(2)(L)(4)], and [Fe(5)O(OH)(O(2)CR)(4)(L)(4)]. The tri-, tetra-, and pentanuclear complexes all possess unusual structures and novel core topologies. M?ssbauer spectroscopy confirms the presence of high-spin ferric centers in the tri- and pentanuclear complexes. Variable-temperature magnetic measurements suggest spin ground states of S = 0, 1/2, 0, and 5/2 for the bi-, tri-, tetra-, and pentanuclear complexes, respectively. Fits of the magnetic susceptibility data have provided the magnitude of the exclusively antiferromagnetic exchange interactions. In addition, an easy-axis-type magnetic anisotropy has been observed for the pentanuclear complexes, with D values of approximately -0.4 cm(-)(1) determined from modeling the low-temperature magnetization data. A low-temperature micro-SQUID study of one of the pentanuclear complexes reveals magnetization hysteresis at nonzero field. This is attributed to an anisotropy-induced energy barrier to magnetization reversal that is of molecular origin. Finally, an inelastic neutron scattering study of one of the trinuclear complexes has revealed that the magnetic behavior arises from two distinct species.  相似文献   
28.
The purpose of this study was to determine in a preclinical purging model, how effective crystal violet-mediated photodynamic therapy (CV-PDT) is against solid tumor and drug-resistant mutant tumor cells, and if certain limitations of CV-PDT can be overcome by using crystal violet (CV) in combination with the membrane-active photosensitizer, Merocyanine 540 (MC540). When used under conditions that preserved an adequate fraction of normal human granulocyte/macrophage progenitors (CFU-GM), CV-PDT failed to achieve meaningful reductions of DU145 prostate, H69 small cell lung cancer, and MDA-MB-435S breast cancer cells. Melphalan-resistant L1210/L-PAM1, adriamycin-resistant P388/ADR, and adriamycin-resistant HL-60/ADR leukemia cells were markedly less sensitive to CV-PDT than their wild-type counterparts, whereas cisplatin-resistant H69/CDDP cells were more sensitive than wild-type H69 cells. Sequential exposure to MC540- and CV-PDT under conditions that preserved an adequate fraction (73% and 29%, respectively) of normal CD34-positive hematopoietic stem cells and granulocyte/macrophage progenitors was highly effective against H69 (99.997% reduction) and H69/CDDP (99.999% reduction) cells, but ineffective against HL-60/ADR, MDA-MB-435S, and DU145 cells. CV thus shows only limited promise as a single-modality purging agent. However, in certain situations, clinically meaningful tumor cell depletions can be obtained by using CV in combination with a second photosensitizer such as MC540.  相似文献   
29.
A new family of tetranuclear Ni complexes [Ni(4)(ROH)(4)L(4)] (H(2)L = salicylidene-2-ethanolamine; R = Me (1) or Et (2)) has been synthesized and studied. Complexes 1 and 2 possess a [Ni(4)O(4)] core comprising a distorted cubane arrangement. Magnetic susceptibility and inelastic neutron scattering studies indicate a combination of ferromagnetic and antiferromagnetic pairwise exchange interactions between the four Ni(II) centers, resulting in an S = 4 spin ground state. Magnetization measurements reveal an easy-axis-type magnetic anisotropy with D approximately -0.93 cm(-)(1) for both complexes. Despite the large magnetic anisotropy, no slow relaxation of the magnetization is observed down to 40 mK. To determine the origin of the low-temperature magnetic behavior, the magnetic anisotropy of complex 1 was probed in detail using inelastic neutron scattering and frequency domain magnetic resonance spectroscopy. The spectroscopic studies confirm the easy-axis-type anisotropy and indicate strong transverse interactions. These lead to rapid quantum tunneling of the magnetization, explaining the unexpected absence of slow magnetization relaxation for complex 1.  相似文献   
30.
We have isolated the 1:1 Ln:[alpha-2-P2W17O61]10- complexes for a series of lanthanides. The single-crystal X-ray structure of the Eu3+ analogue reveals two identical [Eu(H2O)3(alpha-2-P2W17O61)]7- moieties connected through two Eu-O-W bonds, one from each polyoxometalate unit. An inversion center relates the two polyoxometalate units. The Eu(III) ion is substituted for a [WO]4+ unit in the "cap" region of the tungsten-oxygen framework of the parent Wells-Dawson ion. The point group of the dimeric molecule is Ci. The extended structure is composed of the [Eu(H2O)3(alpha-2-P2W17O61)]214- anions linked together by surface-bound potassium cations. The space group is P, a = 12.7214(5) A, b = 14.7402(7) A, c = 22.6724(9) A, alpha = 71.550(3), beta = 84.019(3)degrees, gamma = 74.383(3), V = 3883.2(3) A3, Z = 1. The solution studies, including 183W NMR spectroscopy and luminescence lifetime measurements, show that the molecules dissociate in solution to form monomeric [Ln(H2O)4(alpha-2-P2W17O61)]7- species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号