首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   431篇
  免费   10篇
化学   282篇
晶体学   10篇
力学   11篇
数学   37篇
物理学   101篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   10篇
  2019年   10篇
  2018年   14篇
  2017年   12篇
  2016年   15篇
  2015年   6篇
  2014年   16篇
  2013年   26篇
  2012年   28篇
  2011年   36篇
  2010年   25篇
  2009年   24篇
  2008年   35篇
  2007年   26篇
  2006年   24篇
  2005年   20篇
  2004年   12篇
  2003年   14篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1981年   3篇
  1980年   7篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
排序方式: 共有441条查询结果,搜索用时 15 毫秒
41.
Thermal behavior of 2,4,6-tris(4-(1H-pyrrol-1-yl)phenoxy)-1,3,5-triazine monomer, polypyrrole, and their star shaped copolymer, were investigated using TG and DTA methods. It was found that Tria melts at 517 K and after than it starts to decompose. Decomposition proceeded in two stages which were corresponding to removal of branched groups and remaining core structure degradation, respectively. Polypyrrole and copolymer showed similar thermal behaviors. These compounds decomposed in three stages which are removal of solvent, removal of dopant anion and rest of structure decomposition. The calculation of activation energies of all reactions were realized using model-free (KAS and FWO) methods. The graphs were prepared which show the alteration of activation energy with decomposition ratio. Thermal analysis results showed that dopant anion and solvent removal activation energy values for copolymer are lower than polypyrrole. Star shaped loose-packed novel structure greatly facilitates solvent and dopant anion removal from copolymer. It can be concluded also that thermal analysis can be used as predict package structure of conducting polymers.  相似文献   
42.
This paper aims to develop models to optimally manage costs associated with resources that can be downgraded. These resources are reused a number of times before becoming unsuitable for their original purpose, and then they are assigned for some other purpose. The typical decisions are the quantity of resources to purchase, to downgrade and to hold in the inventory. A network-based model is developed to formulate the problem and to investigate several special cases. As the model becomes an integer program due to some side constraints, several heuristics are developed here to overcome the challenges associated with solving the resulting integer program. A semiconductor industry application for test wafer management is presented using real-life data.  相似文献   
43.
44.
We demonstrate a high optoelectronic performance and application potential of our random network, with subwavelength diameter, ultralong, and high‐quality silver nanowires, stabilized on a substrate with a UV binder. Our networks show very good optoelectronic properties, with the single best figure of merit of ∼1686, and excellent stability under harsh mechanical strain, as well as thermal, and chemical challenge. Our network transparency strongly exceeds the simple shading limit. We show that this transmission enhancement is due to plasmonic refraction, which in an effective medium picture involves localized plasmons, and identify the inhomogeneous broadening as the key factor in promoting this mechanism. Such networks could become a basis for a next generation of ultrahigh‐performance transparent conductors.

  相似文献   

45.
46.
Abstract

Since the two-directional functionally graded (2D-FG) materials can satisfy the new requirements raised based on the elimination of the stress concentration, delamination and cracking problems accompanying with the low cost and lightweight on the structures without sacrificing the stiffness and strength, the structural analyses of these structures become more important than ever. Moreover, the usage of the micro-electromechanical systems composed of 2D-FG materials has been increasing in automotive, military, space, biomedical, and nuclear energy industries. Within this study, the free vibration and buckling behaviors of 2D-FG porous microbeams are investigated based on the modified couple stress theory by employing a transverse shear-normal deformation beam theory and using finite element method. The effects of the thickness to material length scale parameter (MLSP) accompanying with the micro-porosity volume fraction ratio, boundary condition, aspect ratio, and gradient index on the dimensionless fundamental frequencies and dimensionless critical buckling loads of the 2D-FG porous microbeams are investigated. Moreover, with assumption of the variable material length scale parameters (VMLSP), the computed results are compared with ones obtained by employing constant MLSP. It is found that VMLSP increases the stiffness of the 2D-FG porous microbeams and effects the free vibration and buckling responses of these structures.  相似文献   
47.
We report the efficient preparation of furo[2,3‐d]pyridazin‐4(5H)‐one and its N‐substituted derivatives starting from methyl 2‐methylfuran‐3‐carboxylate. The Me group was converted to the aldehyde group, which was then condensed with hydrazine derivatives. Then, the ester functionalities were hydrolyzed to the corresponding acids, followed by treatment with SOCl2 to give N‐substituted furopyridazinone derivatives.  相似文献   
48.
By converting the rectangular basis potential V(x, y) into the form as \({V({r}) + V({r},\varphi)}\) described by the pseudo central plus noncentral potential, particular solutions of the two dimensional Schrödinger equation in plane-polar coordinates have been carried out through the analytic approaching technique of the Nikiforov and Uvarov. Both the exact bound state energy spectra and the corresponding bound state wavefunctions of the complete system are determined explicitly and in closed forms. Our presented results are identical to those of the previous works and they may also be useful for investigation and analysis of structural characteristics in a variety of quantum systems.  相似文献   
49.
Osmolytes are substances that affect osmosis and are used by cells to adapt to environmental stress. Here, we report a neutron reflectivity study on the influence of some osmolytes on protein adsorption at solid-liquid interfaces. Bovine ribonuclease A (RNase) and bovine insulin were used as model proteins adsorbing at a hydrophilic silica and at a hydrophobic polystyrene surface. From the neutron reflectivity data, the adsorbed protein layers were characterized in terms of layer thickness, protein packing density, and adsorbed protein mass in the absence and presence of urea, trehalose, sucrose, and glycerol. All data point to the clear effect of these nonionic cosolvents on the degree of protein adsorption. For example, 1 M sucrose leads to a reduction of the adsorbed amount of RNase by 39% on a silica surface and by 71% on a polystyrene surface. Trehalose was found to exhibit activity similar to that of sucrose. The changes in adsorbed protein mass can be attributed to a decreased packing density of the proteins in the adsorbed layers. Moreover, we investigated insulin adsorption at a hydrophobic surface in the absence and presence of glycerol. The degree of insulin adsorption is decreased by even 80% in the presence of 4 M of glycerol. The results of this study demonstrate that nonionic cosolvents can be used to tune and control nonspecific protein adsorption at aqueous-solid interfaces, which might be relevant for biomedical applications.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号