首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   6篇
化学   110篇
力学   3篇
数学   9篇
物理学   45篇
  2023年   4篇
  2022年   16篇
  2021年   16篇
  2020年   8篇
  2019年   8篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   9篇
  2014年   10篇
  2013年   8篇
  2012年   12篇
  2011年   13篇
  2010年   8篇
  2009年   3篇
  2008年   11篇
  2007年   8篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1990年   1篇
  1973年   1篇
排序方式: 共有167条查询结果,搜索用时 78 毫秒
91.
Natural products from plants contain many interesting biomolecules. Among them, quercetin (Q), gallic acid (GA), and rutin (R) all have well-reported antileishmanial activity; however, their exact mechanisms of action are still not known. The current study is a step forward towards unveil the possible modes of action of these compounds against Leishmania donovani (the causative agent of visceral leishmaniasis). The selected compounds were checked for their mechanisms of action against L. donovani using different biological assays including apoptosis and necrosis evaluation, effects on genetic material (DNA), quantitative testing of nitric oxide production, ultrastructural modification via transmission electron microscopy, and real-time PCR analysis. The results confirmed that these compounds are active against L. donovani, with IC50 values of 84.65 µg/mL, 86 µg/mL, and 98 µg/mL for Q, GA, and R, respectively. These compounds increased nitric oxide production and caused apoptosis and DNA damage, which led to changes in the treated cells’ ultrastructural behavior and finally to the death of L. donovani. These compounds also suppressed essential enzymes like trypanothione reductase and trypanothione synthetase, which are critical for leishmanial survival. The selected compounds have high antileishmanial potentials, and thus in-vivo testing and further screening are highly recommended.  相似文献   
92.
In this paper we prove someL P inequalities for polynomials, wherep is any positive number. They are related to earlier inequalities due to A Zygmund, N G De Bruijn, V V Arestov, etc. A generalization of a polynomial inequality concerning self-inversive polynomials, is also obtained.  相似文献   
93.
Fagonia indica is a rich source of pharmacologically active compounds. The variation in the metabolites of interest is one of the major issues in wild plants due to different environmental factors. The addition of chemical elicitors is one of the effective strategies to trigger the biosynthetic pathways for the release of a higher quantity of bioactive compounds. Therefore, this study was designed to investigate the effects of chemical elicitors, aluminum chloride (AlCl3) and cadmium chloride (CdCl2), on the biosynthesis of secondary metabolites, biomass, and the antioxidant system in callus cultures of F. indica. Among various treatments applied, AlCl3 (0.1 mM concentration) improved the highest in biomass accumulation (fresh weight (FW): 404.72 g/L) as compared to the control (FW: 269.85 g/L). The exposure of cultures to AlCl3 (0.01 mM) enhanced the accumulation of secondary metabolites, and the total phenolic contents (TPCs: 7.74 mg/g DW) and total flavonoid contents (TFCs: 1.07 mg/g DW) were higher than those of cultures exposed to CdCl2 (0.01 mM) with content levels (TPC: 5.60 and TFC: 0.97 mg/g) as compared to the control (TPC: 4.16 and TFC: 0.42 mg/g DW). Likewise, AlCl3 and CdCl2 also promoted the free radical scavenging activity (FRSA; 89.4% and 90%, respectively) at a concentration of 0.01 mM, as compared to the control (65.48%). For instance, the quantification of metabolites via high-performance liquid chromatography (HPLC) revealed an optimum production of myricetin (1.20 mg/g), apigenin (0.83 mg/g), isorhamnetin (0.70 mg/g), and kaempferol (0.64 mg/g). Cultures grown in the presence of AlCl3 triggered higher quantities of secondary metabolites than those grown in the presence of CdCl2 (0.79, 0.74, 0.57, and 0.67 mg/g). Moreover, AlCl3 at 0.1 mM enhanced the biosynthesis of superoxide dismutase (SOD: 0.08 nM/min/mg-FW) and peroxidase enzymes (POD: 2.37 nM/min/mg-FW), while CdCl2 resulted in an SOD activity up to 0.06 nM/min/mg-FW and POD: 2.72 nM/min/mg-FW. From these results, it is clear that AlCl3 is a better elicitor in terms of a higher and uniform productivity of biomass, secondary cell products, and antioxidant enzymes compared to CdCl2 and the control. It is possible to scale the current strategy to a bioreactor for a higher productivity of metabolites of interest for various pharmaceutical industries.  相似文献   
94.
Stevia rebaudiana is an important medicinal plant that belongs to the Asteraceae family. The leaves of Stevia rebaudiana are a rich source of many health-promoting agents such as polyphenols, flavonoids, and steviol glycoside, which play a key role in controlling obesity and diabetes. New strategies such as the elicitation of culture media are needed to enhance the productivity of active components. Herein, the Cuscuta reflexa extracts were exploited as elicitors to enhance the productivity of active components. Cuscuta reflexa is one of the parasitic plants that has the ability to elongate very fast and cover the host plant. Consequently, it may be possible that the addition of Cuscuta reflexa extracts to adventitious root cultures (ADR) of Stevia rebaudiana may elongate the root more than control cultures to produce higher quantities of the desired secondary metabolites. Therefore, the main objective of the current study was to investigate the effect of Cuscuta reflexa extract as a biotic elicitor on the biomass accumulation and production of antioxidant secondary metabolite in submerged adventitious root cultures of Stevia rebaudiana. Ten different concentrations of Cuscuta reflexa were added to liquid media containing 0.5 mg/L naphthalene acetic acid (NAA). The growth kinetics of adventitious roots was investigated for a period of 49 days with an interval of 7 days. The maximum biomass accumulation (7.83 g/3 flasks) was observed on medium containing 10 mg/L extract of Cuscuta reflexa on day 49. As the concentration of extract increases in the culture media, the biomass gradually decreases after 49 days of inoculation. In this study, the higher total phenolics content (0.31 mg GAE/g-DW), total flavonoids content (0.22 mg QE/g-DW), and antioxidant activity (85.54%) were observed in 100 mg/L treated cultures. The higher concentration (100 mg/L) of Cuscuta reflexa extract considerably increased the total phenolics content (TPC), total phenolics production (TPP), total flavonoids content (TFC), total flavonoids production (TFP), total polyphenolics content (TPPC), and total polyphenolics production (TPPP). It was concluded that the extract of Cuscuta reflexa moderately improved biomass accumulation but enhanced the synthesis of phenolics, flavonoids, and antioxidant activities. Here, biomass’s independent production of secondary metabolites was observed with the addition of extract. The present study will be helpful to scale up adventitious roots culture into a bioreactor for the production of secondary metabolites rather than biomass accumulation in medicinally important Stevia rebaudiana.  相似文献   
95.
Summary.  The synthesis of monodesmosidic glycyrrhetic acid disaccharides via its diphenylmethyl ester is described. Their hemolytic activity is lower as compared to the corresponding oleanolic aciddisaccharides. The influence of the structure of the aglycon on the hemolytic activity is discussed. Received November 18, 1999. Accepted November 30, 1999  相似文献   
96.
Verbena officinalis is commonly used in traditional medicine to treat many ailments. Extracts of this plant are therapeutic agents for the potential treatment of different diseases, including colorectal and liver cancers, but have not been explored for their anti-melanoma potential so far. The goal of the current work was to prepare a methanolic extract and fractionate it using hexane, chloroform, ethyl acetate, butanol, and acetone to get semi-purified products. These semi-purified fractions were studied for their potency against melanoma cell lines. The three potent fractions (HA, VO79, and EA3) demonstrated 50% inhibition concentration (IC50) values as low as 2.85 µg/mL against the LOX IMVI cell line. All three fractions showed similar potency in inhibiting the growth of the B16 cells, a murine melanoma cell line. Based on high-resolution mass spectrometry (HRMS) data, for the first time, we report on lupulone A from this plant. LC-MS data also indicated the presence of hedergonic acid, serjanic acid, and other compounds in V. officinalis extracts.  相似文献   
97.
Indole alkaloids represent a large subset of natural products, with more than 4100 known compounds. The majority of these alkaloids are biologically active, with some exhibiting excellent antitumor, antibacterial, antiviral, antifungal, and antiplasmodial activities. Consequently, the natural products of this class have attracted considerable attention as potential leads for novel therapeutics and are routinely isolated, characterized, and profiled to gauge their biological potential. However, data on indole alkaloids, their various structures, and bioactivities are complex due to their diverse sources, such as plants, fungi, bacteria, sponges, tunicates, and bryozoans; thus, isolation methods produce an incredible trove of information. The situation is exacerbated when synthetic derivatives, as well as their structures, bioactivities, and synthetic schemes, are considered. Thus, to make such data comprehensive and inform researchers about the current field’s state, this review summarizes recent reports on novel indole alkaloids. It deals with the isolation and characterization of 250 novel indole alkaloids, a reappraisal of previously reported compounds, and total syntheses of indole alkaloids. In addition, several syntheses and semi-syntheses of indole-containing derivatives and their bioactivities are reported between January 2019 and July 2022.  相似文献   
98.
Continuous flow chemical synthesis is already known to have many attributes that give it superiority over batch processes in several respects. To expand these advantages with those from automation will only drive such enabling technologies further into the faster producing, more efficient 21st century chemical world. In this report we present several examples of algorithmic chemical search, along with flow platforms that link hardware and digital chemical operations on software. This enables organic syntheses to be automatically carried out and optimised with as little human intervention as possible. By applying such enabling technologies to the production of small organic molecules and pharmaceutical compounds in end-to-end multistep processes, a range of reaction types can be accessed and, thus, the flexibility of these single, compact flow designs may be revealed. Automated systems can allow several reactions to take place on the same setup, enabling direct comparison of reactions under different conditions. Moreover, the production of new and known target compounds can be made faster and more efficient, the recipes of which can then be stored as digital files. Some of the automating software has employed machine-powered learning to assist the chemist in developing intelligent algorithms and artificial intelligence (AI) driven synthetic route planning. This ultimately produces a continuous flow platform that can design its own viable pathway to a particular molecule and then carry it out on its own, allowing the chemists, at the same time, to apply their expertise to other pressing challenges in their fields.

Automated flow chemistry: humans and machines working together to create faster, safer, more efficient laboratories of the future where computers help to design and control experiments, allowing researchers to focus on other scientific pursuits.  相似文献   
99.
Sodium alginate (SA) is a progressive material for membrane fabrication. The technological development of SA-based membranes has made a significant contribution to the separation techniques, especially in aqueous organic solutions. The outstanding performance of SA is attributed to its outstanding structural flexibility and hydrophilicity. In view of structural characteristics, SA membranes have immense utilization in the pervaporation separation of organics. Among various organics, dehydration of aqueous ethanol is employed as a standard to check the success of pervaporation (PV) membrane. Because ethanol and water have comparable molecular sizes, thus difficult to extract water from aqueous ethanol mixtures than it is for other organics. A literature survey shows that wide-ranging data are available on the PV performance of SA and its modified membranes. In this context, the present review addresses the recent advances made in SA membranes for enhanced ethanol dehydration performance during the last decade. Available data since 2010 has been compiled for grafted, crosslinked, blend, mixed matrix, and composite hybrid sodium alginate membranes in terms of separation factor, permeation flux, and pervaporation separation index PSI. The data are assessed with reference to the effect of feed composition, membrane selectivity, flux, and swelling behavior.  相似文献   
100.
Journal of Thermal Analysis and Calorimetry - Present study examines the impacts of wall flexibility on MHD peristaltic flow of Eyring–Powell nanofluid with convective conditions. No slip...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号