首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1189篇
  免费   44篇
  国内免费   3篇
化学   732篇
晶体学   25篇
力学   48篇
数学   210篇
物理学   221篇
  2024年   2篇
  2023年   6篇
  2022年   24篇
  2021年   42篇
  2020年   38篇
  2019年   34篇
  2018年   29篇
  2017年   49篇
  2016年   53篇
  2015年   52篇
  2014年   46篇
  2013年   113篇
  2012年   101篇
  2011年   103篇
  2010年   77篇
  2009年   64篇
  2008年   73篇
  2007年   64篇
  2006年   38篇
  2005年   42篇
  2004年   49篇
  2003年   25篇
  2002年   24篇
  2001年   8篇
  2000年   13篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   8篇
  1995年   3篇
  1994年   7篇
  1993年   1篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1980年   2篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1972年   2篇
  1907年   1篇
排序方式: 共有1236条查询结果,搜索用时 15 毫秒
41.
Nitroxide free radicals have been used to study the inner space of one of Rebek’s water‐soluble capsules. EPR and 1H NMR spectroscopy, ESI‐MS, and DFT calculations showed a preference for the formation of 1:2 complexes. EPR titrations allowed us to determine binding constants (Ka) in the order of 107 M ?2. EPR spectral‐shape analysis provided information on the guest rotational dynamics within the capsule. The interplay between optimum hydrogen bonding upon capsule formation and steric strain for guest accommodation highlights some degree of flexibility for guest inclusion, particularly at the center of the capsule where the hydrogen bond seam can be barely distorted or slightly disturbed.  相似文献   
42.
In the present study, the voltammetric and impidimetric detection of microRNA‐21, mir‐21 from cell lysates was investigated for the first time by using graphene modified disposable pencil graphite electrodes (GME). The surface characterization of GME was performed via electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Upon passive adsorption of inosine substituted antimicroRNA‐21, antimir‐21 probe, InP, onto the surface of GME and then solid phase hybridization of InP with mir‐21, the target, the electrochemical detection was performed by using Differential Pulse Voltammetry (DPV) and EIS techniques. This developed biosensor, GME has presented a 2.77 times lower detection limit of 2.09 µg/mL (3.12 pmol) with respect to unmodified pencil graphite electrode (GE). Moreover it is capable of analyzing mir‐21 in the cell lysates of mir‐21 positive breast cancer cell line (MCF‐7) contrast to mir‐21 negative hepatoma cell line (HUH‐7). The proposed electrochemical yes‐no system does not require any purification and/or amplification step prior to fast detection of mir‐21 from real samples.  相似文献   
43.
For the determination of vanadium in biological materials by flame AAS an enrichment is described which comprises chelation with oxine and adsorption on activated carbon: The relative standard deviation for 10 g V/L was found to be 6% (n=15).Dedicated to Professor Dr. Dieter Klockow on the occasion of his 60th birthday  相似文献   
44.
The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium Vibrio fischeri, the freshwater microalga Pseudokirchneriella subcapitata, the freshwater crustacean Daphnia magna, and the duckweed Spirodela polyrhiza. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium.  相似文献   
45.
Three novel tridentate Schiff base ligands derived fromthe 3-hydroxysalicylaldehyde (H2L1), 4-hydroxysalicylaldehyde (H2L2) and 5-bromosalicylaldehyde (H2L3) with a new amine N-(pyridyl)-2-hydroxy-3-methoxy-5-aminobenzylamine (2) have been prepared. The ligands and their metal complexes have been characterized by elemental analyses, conductivity and magnetic susceptibility measurements, i.r., electronic absorption and 1H and 13C n.m.r. spectroscopy. All complexes are binuclear and, in some, the H2O molecules are coordinated to the metal ion. Antimicrobial activities of the ligands and their complexes have been tested against to the Bacillus subtilis IMG 22 (bacteria), Micrococcus luteus LA 2971 (bacteria) Saccharamyces cerevisiae WET 136 (yeast), and Candida albicans CCM 314 (yeast). Thermal properties of all complexes have been studied by t.g. and d.t.a techniques.  相似文献   
46.
The inhibition efficiency of 2-Pyrrolidin-1-yl-1,3-thiazole-5-carboxylic acid (PTCA) against mild steel (MS) corrosion was investigated in acidic solution by using quantum chemical calculations based on Density Functional Theory (DFT) method and electrochemical measurements. The electrochemical impedance spectroscopy (EIS), potentiodynamic, potential zero charge (pzc) analysis and electrochemical noise (EN) measurements at various concentrations (from 0.1 to 10 mM) and immersion times were utilized in experimental part. The surface analysis was achieved scanning electron microscope (SEM) and contact angle measurements in the absence and presence of 10 mM PTCA. According to DFT results, PTCA exhibited 3.737 eV band gap and 8.130 Debye dipole moment which were a signal of potentially convenient corrosion inhibitor properties. PTCA has a remarkable corrosion inhibition capability to mild steel, which inhibited both anodic and cathodic corrosion rates, relying on it's physically adsorption on the metal solution interface and protection ability was increased with increasing PTCA concentration. The obtained adsorption equilibrium constant was 11.11 × 103 M-1 and calculated standard free energy of adsorption was ?33.03 kJ mol?1. The determined activation energy values were 55.58 kJ mol?1 and 96.86 kJ mol?1 in 0.5 M HCl in the absence and presence of 10 mM PTCA, respectively. PTCA demonstrated a strong inhibition efficiency of 98.3%, after 168 h immersion, according to the EIS results. As a consequently, we recommend that PTCA is a convenient inhibitor in 0.1 M HCl for mild steel protection against corrosion.  相似文献   
47.
A platform based on praseodymium doped dysprosium oxide-carbon nanofibers modified electrode was constructed for the simultaneous determination of SY and TAR. SEM, EDX and XRD techniques were utilized for characterizing the proposed material. The voltammetric behaviour and properties of SY and TAR were gradually improved at materials in order from CNFs to Dy2O3−CNFs and Pr6O11@Dy2O3−CNFs. The working range was found to be 1.0×10−9–3.5×10−8 M and 1.5×10−9–4.0×10−8 M for SY and TAR, respectively. The value of LOD was 3.12×10−10 M and 5.35×10−10 M for SY and TAR, respectively. The platform (Pr6O11@Dy2O3−CNFs/GCE) was successfully applied to the electroanalysis of samples.  相似文献   
48.
Glycosylated proteins modulate various important functions of organisms. To reveal the functions of glycoproteins, in‐depth characterization studies are necessary. Although mass spectrometry is a very efficient tool for glycoproteomic and glycomic studies, efficient sample preparation methods are required prior to analyses. In the study, poly(amidoamine) dendrimer‐coated magnetic nanoparticles were presented for the specific enrichment and fast purification of glycopeptides and glycans. The enrichment and purification performance of the developed method was evaluated both at the glycopeptide, and the glycan level using several standard glycoprotein digests and released glycan samples. The poly(amidoamine) dendrimer‐coated magnetic nanoparticles not only showed selective affinity (Immunoglobulin G/Bovine Serum Albumin, 1/10 by weight) to glycopeptides and released glycans but also good sensitivity (0.4 ng/µL for Immunoglobulin G) for glycoproteomic and glycomic applications. Thirty‐five glycopeptides of Immunoglobulin G were detected after enrichment with poly(amidoamine) dendrimer‐coated magnetic nanoparticles. In addition, 55 18O tagged deamidated glycopeptides belonging to human plasma glycoproteome were confirmed. Finally, fifty 2‐aminobenzoic acid, and 30 procainamide‐labelled human plasma N‐glycans released from human plasma glycoproteins were determined after purifications. The results indicate that the proposed enrichment and purification method using poly(amidoamine) dendrimer‐coated magnetic nanoparticles could be simply adjusted to sample preparation methods.  相似文献   
49.
The present paper deals with the electrokinetic characterization of sepiolite. A series of systematic zeta potential measurements have been carried out to determine the isoelectric point (iep) and potential-determining ions (pdi), and the effect of mono-, di-, and trivalent electrolytes such as NaCl, KCl, LiCl, NaNO(3), NaCH(3)COO, MgCl(2), CaCl(2), BaCl(2), CoCl(2), CuCl(2), Pb(NO(3))(2), Na(2)CO(3), Na(2)SO(4), AlCl(3), FeCl(3), and Na(3)PO(4) on the zeta potential of sepiolite. Zeta potential has been calculated with the aid of Smoluchowski's equation. Sepiolite yields an isoelectric point at pH 6.6. The zeta potential for the sepiolite has ranged from +23.3 mV at pH approximately 2 to -22.4 mV at pH approximately 8 at 20 +/- 2 degrees C in water. The valency of the ions have proven to have a great influence on the electrokinetic behavior of the suspension. Monovalent cations were found to have a weak effect, while di- and trivalent cations made the zeta potential positive. Charge reversal was observed for divalent cations at 1 x 10(-2) M and for trivalent cations at 3 x 10(-4) M. As a result, it can be said that monovalent cations are indifferent ions when di- and trivalent cations are potential-determining ions.  相似文献   
50.
The stoichiometry and stability constant of metal complexes with 4-(3-methoxy-salicylideneamino)-5-hydroxynaphthalene-2,7-disulfonic acid monosodium salt (H2L) and 4-(3-methoxysalicylideneamino)-5-hydroxy-6-(2,5-dichlorophenylazo)-2,7-naphthalene disulfonic acid monosodium salt (H2L1) were studied by potentiometric titration. The stability constants of H2L and H2L1 Schiff bases have been investigated by potentiometric titration and u.v.–vis spectroscopy in aqueous media. The dissociation constants of the ligand and the stability constants of the metal complexes were calculated pH-metrically at 25 °C and 0.1 m KCl ionic strength. The dissociation constants for H2L were obtained as 3.007, 7.620 and 9.564 and for H2L1, 4.000, 6.525, 9.473 and 10.423, respectively. The complexes were found to have the formulae [M(L)2] for M = Co(II), Ni(II), Zn(II) and Cu(II). The stability of the complexes follows the sequence: Zn(II) < Co(II) < Cu(II) < Ni(II). The high stability of H2L1 towards Cu(II) and Ni(II) over the other ions is remarkable, in particular over Cu(II), and may be of technological interest. Concentration distribution diagram of various species formed in solution was evaluated for ligands and complexes. The formation of the hydrogen bonds may cause this increased stability of ligands. The pH-metric data were used to find the stoichiometry, deprotonation and stability constants via the SUPERQUAD computer program.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号