首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
化学   14篇
晶体学   1篇
物理学   10篇
  2020年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
11.
We present a combined experimental and theoretical analysis of the structure of finite-sized Sigma 3 [112] grain boundaries in Au. High-resolution electron microscopy shows lattice translations at the grain boundary, with the magnitude of the translation varying along the finite-sized grain boundaries. The presence of this structural profile is explained using continuum elasticity theory and first-principles calculations as originating from a competition between elastic energy and the energy cost of forming continuous [111] planes across the boundary. This competition leads to a structural transition between offset-free and nontrivial grain boundary structures at a critical grain boundary size, in agreement with the experiments. We also provide a method to estimate the energy barrier of the gamma surface.  相似文献   
12.
Twinning is ubiquitous in electroplated metals. Here, we identify and discuss unique aspects of twinning found in electrodeposited Ni–Mn alloys. Previous reports concluded that the twin boundaries effectively refine the grain size, which enhances mechanical strength. Quantitative measurements from transmission electron microscopy (TEM) images show that the relative boundary length in the as-plated microstructure primarily comprises twin interfaces. Detailed TEM characterization reveals a range of length scales associated with twinning beginning with colonies (~1000?nm) down to the width of individual twins, which is typically <50?nm. We also consider the connection between the crystallographic texture of the electrodeposit and the orientation of the twin planes with respect to the plating direction. The Ni–Mn alloy deposits in this work possess a {110}-fiber texture. While twinning can occur on {111} planes either perpendicular or oblique to the plating direction in {110}-oriented grains, plan-view TEM images show that twins form primarily on those planes parallel to the plating direction. Therefore, grains enclosed by twins and multiply twinned particles are produced. Another important consequence of a high twin density is the formation of large numbers of twin-related junctions. We measure an area density of twin junctions that is comparable to the density of dislocations in a heavily cold-worked metal.  相似文献   
13.
Recent work shows that coating a supported palladium catalyst with a self-assembled monolayer (SAM) of alkanethiols can dramatically improve selectivity in the hydrogenation of 1-epoxy-3-butene (EpB) to 1-epoxybutane. Here, we present the results of surface-level investigations of the adsorption of EpB and related molecules on SAM-coated Pd(111), with an aim of identifying mechanistic explanations for the observed catalytic behavior. Alkanethiol SAM-covered Pd(111) surfaces were prepared by conventional techniques and transferred to ultrahigh vacuum, where they were characterized using Auger electron spectroscopy (AES) and temperature-programmed desorption (TPD) of EpB and other probe molecules. Whereas previous studies have shown that EpB undergoes rapid decomposition via epoxide ring opening on uncoated Pd(111), TPD studies show that EpB does not undergo substantial ring opening on SAM-covered surfaces but rather desorbs intact at temperatures less than 300 K. Systematic comparisons of EpB desorption spectra to spectra for other C(4) oxygenates suggest that the SAM creates a kinetic barrier to epoxide ring-opening reactions that does not exist on the uncoated surface. The EpB desorption spectra as a function of exposure show behavior similar to the desorption of olefins from Pd(111), indicating that the binding of the olefin functionality, in contrast to that of the epoxide ring, is not significantly perturbed. EpB desorption spectra from surfaces with less well-ordered SAMs show the presence of weakly bound states not observed on well-ordered SAM surfaces. The lower activity observed on catalysts covered with less well-ordered SAMs is hypothesized to occur due to partial confinement of adsorbates into these weakly bound, less active states.  相似文献   
14.
15.
Metal-oxide interfaces are of great importance in catalytic applications since each material can provide a distinct functionality that is necessary for efficient catalysis in complex reaction pathways. Moreover, the synergy between two materials can yield properties that exceed the superposition of single sites. While interfaces between metals and metal oxides can play a key role in the reactivity of traditional supported catalysts, significant attention has recently been focused on using “inverted” oxide/metal catalysts to prepare catalytic interfaces with unique properties. In the inverted systems, metal surfaces or nanoparticles are covered by oxide layers ranging from submonolayer patches to continuous films with thickness at the nanometer scale. Inverse catalysts provide an alternative approach for catalyst design that emphasizes control over interfacial sites, including inverted model catalysts that provide an important tool for elucidation of mechanisms of interfacial catalytic reactions and oxide-coated metal nanoparticles that can yield improved stability, activity and selectivity for practical catalysts.This review begins by providing a summary of recent progress in the use of inverted model catalysts in surface science studies, where oxides are usually deposited onto the surface of metal single crystals under ultra-high vacuum conditions. Surface-level studies of inverse systems have yielded key insights into interfacial catalysis and facilitated active site identification for important reactions such as CO oxidation, the water-gas shift reaction, and CO2 reduction using well-defined model systems, informing strategies for designing improved technical catalysts. We then expand the scope of inverted catalysts, using the “inverse” strategy for preparation of higher-surface area practical catalysts, chiefly through the deposition of metal oxide films or particles onto metal nanoparticles. The synthesis techniques include encapsulation of metal nanoparticles within porous oxide shells to generate core-shell type catalysts using wet chemical techniques, the application of oxide overcoat layers through atomic layer deposition or similar techniques, and spontaneous formation of metal oxide coatings from more conventional catalyst geometries under reaction or pretreatment conditions. Oxide-coated metal nanoparticles have been applied for improvement of catalyst stability, control over transport or binding to active sites, direct modification of the active site structure, and formation of bifunctional sites. Following a survey of recent studies in each of these areas, future directions of inverted catalytic systems are discussed.  相似文献   
16.
Selecting specific 2D building blocks and specific layering sequences of van der Waals heterostructures should allow the formation of new materials with designed properties for specific applications. Unfortunately, the synthetic ability to prepare such structures at will, especially in a manner that can be manufactured, does not exist. Herein, we report the targeted synthesis of new metal–semiconductor heterostructures using the modulated elemental‐reactant technique to nucleate specific 2D building blocks, control their thickness, and avoid epitaxial structures with long‐range order. The building blocks, VSe2 and GeSe2, have different crystal structures, which inhibits cation intermixing. The precise control of this approach enabled us to synthesize heterostructures containing GeSe2 monolayers alternating with VSe2 structural units with specific sequences. The transport properties systematically change with nanoarchitecture and a charge‐density wave‐like transition is observed.  相似文献   
17.
The reactions of ethylene glycol and 1,2-propanediol have been studied on Pd(111) using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). Both molecules initially decompose through O–H activation, forming ethylenedioxy (–OCH2CH2O–) and 1,2-propanedioxy (–OCH2CH(CH3)O–) surface intermediates. For ethylene glycol, increases in thermal energy lead to dehydrogenation and formation of carbonyl species at both oxygen atoms. The resulting glyoxal (O═CHCH═O) either desorbs molecularly or reacts through one of two competing pathways. The favored pathway proceeds via C–C bond scission, dehydrogenation, and decarbonylation to form carbon monoxide and hydrogen. In a minor pathway, small amounts of glyoxal undergo C–O bond scission and recombination with surface hydrogen to form ethylene and water. The same reaction mechanism occurs for 1,2-propanediol after methyl elimination and formation of glyoxal. However, this is accompanied by a minor pathway involving a methylglyoxal (O=CHC(CH3)=O) intermediate. The prevalence of the dehydrogenation/decarbonylation pathway in the current work is consistent with the high selectivity for C–C scission in the aqueous phase reforming of polyols on supported Pd catalysts.  相似文献   
18.
Density functional theory (DFT) was used to study the electrolyte solution effects on the oxygen reduction reaction (ORR) on Pt(111). To model the acid electrolyte, an H(5)O(2)(+) cluster was used. The vibrational proton oscillation modes for adsorbed H(5)O(2)(+) computed at 1711 and 1010 cm(-1), in addition to OH stretching and H(2)O scissoring modes, agree with experimental vibrational spectra for proton formation on Pt surfaces in ultrahigh vacuum. Using the H(5)O(2)(+) model, protonation of adsorbed species was found to be facile and consistent with the activation barrier of proton transfer in solution. After protonation, OOH dissociates with an activation barrier of 0.22 eV, similar to the barrier for O(2) dissociation. Comparison of the two pathways suggests that O(2) protonation precedes dissociation in the oxygen reduction reaction. Additionally, an OH diffusion step following O protonation inhibits the reaction, which may lead to accumulation of oxygen on the electrode surface.  相似文献   
19.
To better understand the nature of alkyl intermediates often invoked in reactions involving hydrocarbon reactants and products, the adsorption of linear and branched C(1)-C(4) alkyls on Cu(111) at 1/4 ML and 1/9 ML coverages was studied using density functional theory. The adsorption energy and site preference are found to be coverage-dependent, and both direct alkyl-alkyl interactions and changes in the Cu electronic structure play a role in these trends. It was found that methyl strongly prefers the hollow sites, the branched alkyls strongly prefer the top site, and the linear C(2)-C(4) alkyls have weak site preferences that change with coverage. To explain these differences, rationalize alkyl adsorption trends, and predict the binding energy of other alkyls, a simple model was developed in which the binding energy is fit as a linear function of the number of C-Cu and C-H-Cu interactions as well as the C-H bond energy in the corresponding alkane. Site preference can be understood as a compromise between C-Cu interactions and C-H-Cu interactions. Density of states analysis was used to gain a molecular-orbital understanding of the bonding of alkyls to Cu(111).  相似文献   
20.
Catalysts are conventionally designed with a focus on enthalpic effects, manipulating the Arrhenius activation energy. This approach ignores the possibility of designing materials to control the entropic factors that determine the pre-exponential factor. Here we investigate a new method of designing supported Pt catalysts with varying degrees of molecular confinement at the active site. Combining these with fast and precise online measurements, we analyse the kinetics of a model reaction, the platinum-catalysed hydrolysis of ammonia borane. We control the environment around the Pt particles by erecting organophosphonic acid barriers of different heights and at different distances. This is done by first coating the particles with organothiols, then coating the surface with organophosphonic acids, and finally removing the thiols. The result is a set of catalysts with well-defined “empty areas” surrounding the active sites. Generating Arrhenius plots with >300 points each, we then compare the effects of each confinement scenario. We show experimentally that confining the reaction influences mainly the entropy part of the enthalpy/entropy trade-off, leaving the enthalpy unchanged. Furthermore, we find this entropy contribution is only relevant at very small distances (<3 Å for ammonia borane), where the “empty space” is of a similar size to the reactant molecule. This suggests that confinement effects observed over larger distances must be enthalpic in nature.

Designable materials help pinpoint the role of steric confinement in catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号