首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   699篇
  免费   34篇
  国内免费   11篇
化学   450篇
晶体学   3篇
力学   52篇
数学   100篇
物理学   139篇
  2024年   1篇
  2023年   4篇
  2022年   21篇
  2021年   19篇
  2020年   33篇
  2019年   30篇
  2018年   47篇
  2017年   30篇
  2016年   61篇
  2015年   33篇
  2014年   55篇
  2013年   104篇
  2012年   58篇
  2011年   50篇
  2010年   38篇
  2009年   31篇
  2008年   26篇
  2007年   20篇
  2006年   16篇
  2005年   11篇
  2004年   15篇
  2003年   7篇
  2002年   9篇
  2000年   2篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1992年   2篇
  1981年   1篇
  1980年   3篇
  1979年   5篇
  1978年   2篇
排序方式: 共有744条查询结果,搜索用时 15 毫秒
211.
A thin polydimethylsiloxane (PDMS) layer on polyethersulfone (PES) support was synthesized and pure and mixed gas permeation of C3H8, CH4, and H2 through it was measured. At first, a macroporous PES support was prepared by using the phase inversion method and characterized. Then, a thin layer of PDMS was coated over the support. Finally, permeation behavior of the synthesized composite membrane was investigated by pure and mixed gas experiments under various operating conditions. The synthesized PDMS/PES membrane showed much better gas permeation performance than others reported in the literature. Pure gas experiments showed that increase in the transmembrane pressure increases the permeability coefficient of heavier gases, C3H8, while decreases those of lighter ones, CH4 and H2. Exactly opposite behavior was observed in mixed gas experiments due to the competitive sorption and diffusion in the plasticized polymer matrix. Temperature was realized to induce similar effects on the permeability of pure and mixed gases. As expected, in rubbery membranes such as PDMS, permeability values of more condensable gases decrease with increasing temperature, whereas those of permanent gases increase. In the case of mixed gas experiments, increase in the C3H8 concentration in feed led to increase in the permeabilities of all the components due to the C3H8‐induced swelling of the PDMS film. High C3H8/H2 and C3H8/CH4 ideal selectivities of 22.1 and 14.7, respectively, at a transmembrane pressure of 7 atm as well as reasonable C3H8 separation factor (SF) values for all mixed gas experiments (in the range of 8.1–16.8) demonstrated the ability of the synthesized PDMS/PES membrane for the separation of organic vapors from permanent gases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
212.
We study the entanglement dynamics of an anisotropic two-qubit Heisenberg XYZ system in the presence of intrinsic decoherence. The usefulness of such a system for performance of the quantum teleportation protocol T0\mathcal{T}_0 and entanglement teleportation protocol T1\mathcal{T}_1 is also investigated. The results depend on the initial conditions and the parameters of the system. The roles of system parameters such as the inhomogeneity of the magnetic field b and the spin-orbit interaction parameter D, in entanglement dynamics and fidelity of teleportation, are studied for both product and maximally entangled initial states of the resource. We show that for the product and maximally entangled initial states, increasing D amplifies the effects of dephasing and hence decreases the asymptotic entanglement and fidelity of the teleportation. For a product initial state and specific interval of the magnetic field B, the asymptotic entanglement and hence the fidelity of teleportation can be improved by increasing B. The XY and XYZ Heisenberg systems provide a minimal resource entanglement, required for realizing efficient teleportation. Also, in the absence of the magnetic field, the degree of entanglement is preserved for the maximally entangled initial states $\left| {\psi \left. {\left( 0 \right)} \right\rangle = \frac{1} {{\sqrt 2 }}\left( {\left| {\left. {00} \right\rangle \pm } \right|\left. {11} \right\rangle } \right)} \right.$\left| {\psi \left. {\left( 0 \right)} \right\rangle = \frac{1} {{\sqrt 2 }}\left( {\left| {\left. {00} \right\rangle \pm } \right|\left. {11} \right\rangle } \right)} \right.. The same is true for the maximally entangled initial states $\left| {\psi \left. {\left( 0 \right)} \right\rangle = \frac{1} {{\sqrt 2 }}\left( {\left| {\left. {01} \right\rangle \pm } \right|\left. {10} \right\rangle } \right)} \right.$\left| {\psi \left. {\left( 0 \right)} \right\rangle = \frac{1} {{\sqrt 2 }}\left( {\left| {\left. {01} \right\rangle \pm } \right|\left. {10} \right\rangle } \right)} \right., in the absence of spin-orbit interaction D and the inhomogeneity parameter b. Therefore, it is possible to perform quantum teleportation protocol T0\mathcal{T}_0 and entanglement teleportation T1\mathcal{T}_1, with perfect quality, by choosing a proper set of parameters and employing one of these maximally entangled robust states as the initial state of the resource.  相似文献   
213.
The present article deals with multi-waves and breather wave solutions of the generalized Bogoyavlensky-Konopelchenko equation by virtue of the Hirota bilinear operator method and the semi-inverse variational principle. The obtained solutions for solving the current equation represent some localized waves including soliton, periodic, and cross-kink solutions in which have been investigated by the approach of the bilinear method. With certain parameter constraints in the multi-waves and breather, all cases of the periodic and cross-kink solutions can be captured from the one and two soliton(s). The obtained solutions are extended with numerical simulation to analyze graphically, which results into 1- and 2-soliton solutions and also periodic and cross-kink solutions profiles, that will be extensively used to report many attractive physical phenomena in the fields of acoustics, heat transfer, fluid dynamics, classical mechanics, and so on.  相似文献   
214.
This paper proposes a mixed integer linear programming model and solution algorithm for solving supply chain network design problems in deterministic, multi-commodity, single-period contexts. The strategic level of supply chain planning and tactical level planning of supply chain are aggregated to propose an integrated model. The model integrates location and capacity choices for suppliers, plants and warehouses selection, product range assignment and production flows. The open-or-close decisions for the facilities are binary decision variables and the production and transportation flow decisions are continuous decision variables. Consequently, this problem is a binary mixed integer linear programming problem. In this paper, a modified version of Benders’ decomposition is proposed to solve the model. The most difficulty associated with the Benders’ decomposition is the solution of master problem, as in many real-life problems the model will be NP-hard and very time consuming. In the proposed procedure, the master problem will be developed using the surrogate constraints. We show that the main constraints of the master problem can be replaced by the strongest surrogate constraint. The generated problem with the strongest surrogate constraint is a valid relaxation of the main problem. Furthermore, a near-optimal initial solution is generated for a reduction in the number of iterations.  相似文献   
215.
The propagation of bulk waves in rectangular nanoplates is studied on the basis of nonlocal three-dimensional elasticity theory. The nonlocal theory applies to both thin and thick rectangular orthotropic nanoplates. The dispersion relation for the waves is derived analytically. Our results are checked against data for macroplates. The influence of nonlocality and other parameters on the wave frequency and phase velocity is discussed.  相似文献   
216.
Euclidean Jordan algebra is a commonly used tool in designing interior-point algorithms for symmetric cone programs. In this paper, we present a full Nesterov–Todd (NT) step infeasible interior-point algorithm for horizontal linear complementarity problems over Cartesian product of symmetric cones. Since the algorithm uses only full-NT feasibility and centring steps, it has the advantage that no line searches are needed. The complexity result obtained here for symmetric cones using NT directions coincides with the best bound obtained for horizontal linear complementarity problems.  相似文献   
217.
We develop a numerical technique for a class of singularly perturbed two-point singular boundary value problems on an uniform mesh using polynomial cubic spline. The scheme derived in this paper is second-order accurate. The resulting linear system of equations has been solved by using a tri-diagonal solver. Numerical results are provided to illustrate the proposed method and to compared with the methods in [R.K. Mohanty, Urvashi Arora, A family of non-uniform mesh tension spline methods for singularly perturbed two-point singular boundary value problems with significant first derivatives, Appl. Math. Comput., 172 (2006) 531–544; M.K. Kadalbajoo, V.K. Aggarwal, Fitted mesh B-spline method for solving a class of singular singularly perturbed boundary value problems, Int. J. Comput. Math. 82 (2005) 67–76].  相似文献   
218.
This paper presents an investigation on the buckling characteristics of nanoscale rectangular plates under bi-axial compression considering non-uniformity in the thickness. Based on the nonlocal continuum mechanics, governing differential equations are derived. Numerical solutions for the buckling loads are obtained using the Galerkin method. The present study shows that the buckling behaviors of single-layered graphene sheets (SLGSs) are strongly sensitive to the nonlocal and non-uniform parameters. The influence of percentage change of thickness on the stability of SLGSs is more significant in the strip-type nonoplates (nanoribbons) than in the square-type nanoplates.  相似文献   
219.
Seven new azo disperse dyes based on N-benzyl–N-ethyl–aniline were synthesized and characterized by UV–Vis, FT-IR and 1H NMR spectroscopic techniques. The UV–visible studies and solvatochromic behavior of all dyes in 15 solvents with different polarity were examined and a meaningful correlation was observed. In the optical characterization of dyes using Z-Scan experiment, thin films of polymethyl metacrylate doped with guest synthesized chromophores 2, 3, 4 and 7 were investigated.  相似文献   
220.
The synthesis and characterization of solution‐cast, molded gels of N‐vinyl formamide (NVF) has not been previously reported even though NVF is an isomer of acrylamide (AAm) and polyacrylamide (PAAm) hydrogels have many commercial applications. Aqueous NVF solutions were cross‐linked into gels using a novel cross‐linker, 2‐(N‐vinylformamido)ethylether, and the thermally‐activated initiator VA‐044. For a given formulation, PNVF gels swell up to twice that of PAAm gels cross‐linked with N,N′‐methylenebisacrylamide. From swelling and compression measurements, PNVF gels were found to be more hydrophilic than PAAm gels. Flory‐Huggins solubility parameters were χ = 0.38?2 + 0.48 for PNVF and χ = 0.31?2 + 0.49 for PAAm, where ?2 is the polymer volume fraction. The shear moduli for PNVF and PAAm scale with ? and ? respectively, consistent with good solvent behavior, also suggesting PNVF is more hydrophilic than PAAm. Similarity of mechanical properties for both gels as a function of ?2 suggests that network structures of PNVF and PAAm gels are similar. Fracture strains of both gels declined with ?2 by the same linear function while fracture stresses were about 500 kPa regardless of formulation. Since NVF is a liquid monomer, less toxic than AAm and can be hydrolyzed to a cationic form, PNVF gels could become technologically significant. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号