首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30122篇
  免费   125篇
  国内免费   286篇
化学   11242篇
晶体学   284篇
力学   1415篇
综合类   12篇
数学   9258篇
物理学   8322篇
  2022年   45篇
  2021年   65篇
  2020年   43篇
  2019年   49篇
  2018年   1204篇
  2017年   1462篇
  2016年   751篇
  2015年   596篇
  2014年   511篇
  2013年   704篇
  2012年   3210篇
  2011年   2387篇
  2010年   1842篇
  2009年   1585篇
  2008年   619篇
  2007年   694篇
  2006年   665篇
  2005年   4502篇
  2004年   3978篇
  2003年   2350篇
  2002年   532篇
  2001年   298篇
  2000年   103篇
  1999年   193篇
  1998年   121篇
  1997年   80篇
  1996年   64篇
  1995年   53篇
  1994年   49篇
  1993年   34篇
  1992年   179篇
  1991年   162篇
  1990年   141篇
  1989年   112篇
  1988年   111篇
  1987年   64篇
  1986年   45篇
  1985年   49篇
  1984年   37篇
  1983年   42篇
  1979年   34篇
  1976年   83篇
  1975年   39篇
  1974年   44篇
  1973年   52篇
  1972年   40篇
  1970年   35篇
  1969年   38篇
  1968年   35篇
  1966年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
MicroRNA (miRNA) levels in serum have recently emerged as potential novel biomarkers for various diseases. miRNAs are routinely measured by standard quantitative real-time PCR (qPCR); however, the high sensitivity of qPCR demands appropriate normalization to correct for nonbiological variation. Presently, RNU6B (U6) is used for data normalization of circulating miRNAs in many studies. However, it was suggested that serum levels of U6 themselves might differ between individuals. Therefore, no consensus has been reached on the best normalization strategy in ‘circulating miRNA''. We analyzed U6 levels as well as levels of spiked-in SV40-RNA in sera of 44 healthy volunteers, 203 intensive care unit patients and 64 patients with liver fibrosis. Levels of U6 demonstrated a high variability in sera of healthy donors, patients with critical illness and liver fibrosis. This high variability could also be confirmed in sera of mice after the cecal ligation and puncture procedure. Most importantly, levels of circulating U6 were significantly upregulated in sera of patients with critical illness and sepsis compared with controls and correlated with established markers of inflammation. In patients with liver fibrosis, U6 levels were significantly downregulated. In contrast, levels of spiked-in SV40 displayed a significantly higher stability both in human cohorts (healthy, critical illness, liver fibrosis) and in mice. Thus, we conclude that U6 levels in the serum are dysregulated in a disease-specific manner. Therefore, U6 should not be used for data normalization of circulating miRNAs in inflammatory diseases and previous studies using this approach should be interpreted with caution. Further studies are warranted to identify specific regulatory processes of U6 levels in sepsis and liver fibrosis.  相似文献   
992.
Exposure to the extreme low temperatures, ranging between ?60 and ?140 °C, has many beneficial effects on the human body what is exploited for example in sport medicine, for treatment of locomotory system diseases or even some psychiatric disorders. To insure the safe treatment in a cryochamber, careful planning of the procedure and proper qualification of patients, is required. Cardiovascular system, especially skin vasculature plays the major role of the body response to the extreme cold. The changes in skin blood flow are reflected in changes of the temperature distribution. Therefore, the thermal imaging, which allows to analyze the temperature distribution on the human body, may be successfully exploited to examine the influence of extremely low temperatures on the skin vascular system. The aim of this work was to examine the temperature, blood pressure, and heart rate changes after the whole body cryotherapy in healthy subjects to determine the safety conditions of the treatment. 480 healthy students of the Wroc?aw University School of Physical Education were divided into two groups (each 240 persons). All subjects were exposed for 1–3 min to the extremely low temperatures: ?60, ?100, ?120, and ?140 °C. In one group, the thermograms were recorded before and 5 and 30 min after the cryotherapy by means of ThermoVision A20 M thermal camera. In the other one, heart rate and blood pressure were measured before and 5 min after the cryotherapy. It was demonstrated that 3-min exposure in the cryochamber and the temperature ?120 °C are the optimal and safe cryotherapy parameters.  相似文献   
993.
994.

Background

BTBD10 binds to Akt and protein phosphatase 2A (PP2A) and inhibits the PP2A-mediated dephosphorylation of Akt, thereby keeping Akt activated. Previous studies have suggested that BTBD10 plays an important role in preventing motor neuronal death and accelerating the growth of pancreatic beta cells. Because levels of BTBD10 expression are much lower in many non-nervous tissues than nervous tissues, there may be a relative of BTBD10 that has BTBD10-like function in non-neuronal cells.

Results

A 419-amino-acid BTBD10-like protein, named KCTD20 (potassium channel tetramerization protein domain containing 20), was to found to bind to all Akt isoforms and PP2A. Overexpression of KCTD20 increased Akt phosphorylation at Thr308, as BTBD10 did, which suggests that KCTD20 as well as BTBD10 positively regulates the function of Akt. KCTD20 was ubiquitously expressed in non-nervous as well as nervous tissues.

Conclusions

KCTD20 is a positive regulator of Akt and may play an important role in regulating the death and growth of some non-nervous and nervous cells.
  相似文献   
995.

Background

YedY, a molybdoenzyme belonging to the sulfite oxidase family, is found in most Gram-negative bacteria. It contains a twin-arginine signal sequence that is cleaved after its translocation into the periplasm. Despite a weak reductase activity with substrates such as dimethyl sulfoxide or trimethylamine N-oxide, its natural substrate and its role in the cell remain unknown. Although sequence conservation of the YedY family displays a strictly conserved hydrophobic C-terminal residue, all known studies on Escherichia coli YedY have been performed with an enzyme containing a 6 histidine-tag at the C-terminus which could hamper enzyme activity.

Results

In this study, we demonstrate that the tag fused to the C-terminus of Rhodobacter sphaeroides YedY is detrimental to the enzyme’s reductase activity and results in an eight-fold decrease in catalytic efficiency. Nonetheless this C-terminal tag does not influence the properties of the molybdenum active site, as assayed by EPR spectroscopy. When a cleavable His-tag was fused to the N-terminus of the mature enzyme in the absence of the signal sequence, YedY was expressed and folded with its cofactor. However, when the signal sequence was added upstream of the N-ter tag, the amount of enzyme produced was approximately ten-fold higher.

Conclusion

Our study thus underscores the risk of using a C-terminus tagged enzyme while studying YedY, and presents an alternative strategy to express signal sequence-containing enzymes with an N-terminal tag. It brings new insights into molybdoenzyme maturation in R. sphaeroides showing that for some enzymes, maturation can occur in the absence of the signal sequence but that its presence is required for high expression of active enzyme.
  相似文献   
996.
A series of nanoparticles is prepared via layer‐by‐layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers as potential carriers. Particle size, surface charge and internal chain mobility are quantified as a function of the polymer type and number of layers. The effect of addition of surfactant is examined to simulate the effects of nanoparticle dissolution. The cyctotoxicity of these particles (in epithelia and murine cell lines) are orders of magnitude lower than polyethyleneimine controls. Stable nanoparticles may be prepared from mixtures of strongly, oppositely charged polymers, but less successfully from weakly charged polymers, and, given their acceptable toxicity characteristics, such modularly designed constructs show promise for drug and gene delivery.

  相似文献   

997.
Novel drug delivery systems capable of continuous sustained release of therapeutics have been studied extensively for use in the prevention and management of chronic diseases. The use of these systems holds promise as a means to achieve higher patient compliance while improving therapeutic index and reducing systemic toxicity. In this work, an implantable nanochannel drug delivery system (nDS) is characterized and evaluated for the long-term sustained release of atorvastatin (ATS) and trans-resveratrol (t-RES), compounds with a proven role in managing atherogenic dyslipidemia and promoting cardioprotection. The primary mediators of drug release in the nDS are nanofluidic membranes with hundreds of thousands of nanochannels (up to 100,000/mm2) that attain zero-order release kinetics by exploiting nanoconfinement and molecule-to-surface interactions that dominate diffusive transport at the nanoscale. These membranes were characterized using gas flow analysis, acetone diffusion, and scanning and transmission electron microscopy (SEM, TEM). The surface properties of the dielectric materials lining the nanochannels, SiO2 and low-stress silicon nitride, were further investigated using surface charge analysis. Continuous, sustained in vitro release for both ATS and t-RES was established for durations exceeding 1 month. Finally, the influence of the membranes on cell viability was assessed using human microvascular endothelial cells. Morphology changes and adhesion to the surface were analyzed using SEM, while an MTT proliferation assay was used to determine the cell viability. The nanochannel delivery approach, here demonstrated in vitro, not only possesses all requirements for large-scale high-yield industrial fabrication, but also presents the key components for a rapid clinical translation as an implantable delivery system for the sustained administration of cardioprotectants.  相似文献   
998.
Urine samples have been the predominant matrix for doping controls for several decades. However, owing to the complementary information provided by blood (as well as serum or plasma and dried blood spots (DBS)), the benefits of its analysis have resulted in continuously increasing appreciation by anti-doping authorities. On the one hand, blood samples allow for the detection of various different methods of blood doping and the abuse of erythropoiesis-stimulating agents (ESAs) via the Athlete Biological Passport; on the other hand, targeted and non-targeted drug detection by means of chromatographic–mass spectrometric methods represents an important tool to increase doping control frequencies out-of-competition and to determine drug concentrations particularly in in-competition scenarios. Moreover, blood analysis seldom requires in-depth knowledge of drug metabolism, and the intact substance rather than potentially unknown or assumed metabolic products can be targeted. In this review, the recent developments in human sports drug testing concerning mass spectrometry-based techniques for qualitative and quantitative analyses of therapeutics and emerging drug candidates are summarized and reviewed. The analytical methods include both low and high molecular mass compounds (e.g., anabolic agents, stimulants, metabolic modulators, peptide hormones, and small interfering RNA (siRNA)) determined from serum, plasma, and DBS using state-of-the-art instrumentation such as liquid chromatography (LC)–high resolution/high accuracy (tandem) mass spectrometry (LC-HRMS), LC–low resolution tandem mass spectrometry (LC-MS/MS), and gas chromatography–mass spectrometry (GC-MS).  相似文献   
999.
Endocannabinoids (ECs) are endogenous compounds that interact with type-1 and type-2 cannabinoid receptors (CB1 and CB2), as well as non-cannabinoid receptors. The multitude of roles attributed to ECs makes them an emerging target of pharmacotherapy for a number of disparate diseases. Here a high-throughput bioanalytical method based on micro SPE (μ-SPE) followed by LC-MS/MS analysis for the simultaneous determination of the two major endocannabinoids 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (anandamide, AEA) in human plasma is presented. The chromatographic conditions obtained with the fused-core column allowed a good separation in 10 min also of the AG isomers. A very simple and reliable extraction has been optimised by means of C18-modified tips: it requires only 100 μL of plasma and allows the use of minimal volumes of organic solvent. The present method allows a rapid and effective clean-up, which also minimises the isomerisation of 2-AG. The whole procedure has been validated following the FDA guidelines for bioanalytical methods validation: the satisfactory recovery values, the negligible matrix effect and the good values of accuracy and reproducibility make it a simple and high-throughput analytical tool for clinical and biochemical studies on endocannabinoid signaling in humans.
Figure
Determination of the two major endocannabinoids in human plasma by μ-SPE followed by HPLC-MS/MS  相似文献   
1000.
In this work, functionalized pyrimidine-2,4-dione-, benzo[g]-, and dihydropyrano[2,3-g]chromene derivatives have been synthesized via a Michael addition of 2-hydroxy-1,4-naphthoquinone or 2,5-dihydroxy-1,4-benzoquinone to the Knoevenagel condensation product of an aldehyde with Meldrum’s acid, dimedone or barbituric acid in the presence of a catalytic amount of l-proline under refluxing conditions in water in good to excellent yields.  相似文献   
[首页] « 上一页 [95] [96] [97] [98] [99] 100 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号