首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   0篇
力学   47篇
数学   6篇
物理学   12篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   7篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
31.
It is shown that a large variety of physical effects such as continuously distributed defects, heat conduction, anelasticity (plasticity in finite-strains, growth), phase transitions and more generally shock-waves, can be viewed as pseudo-material inhomogeneities when continuum thermomechanics is completely projected onto the material manifold itself. Main ingredients in this approach are the notions of local structural rearrangements (Epstein and Maugin) and of its thermodynamical dual, the Eshelby material stress tensor. An outcome of this is the unification of the theories of inhomogeneity of Eshelby on the one hand, and of Kroener-Noll-Wang, on the other hand. The notion of configurational forces as understood nowadays in solid-state physics and engineering mechanics follows necessarily from these developments. They are driving forces acting on sets of material points that correspond to strongly localized fields and, in the limit, singularities, which are also viewed as pseudo-inhomogeneities. The second law of thermodynamics then is a constraint imposed on the time evolution of these pseudo-inhomogeneities (e.g., plastic evolution, volumetric growth, progress of a crack, advancement of a phase-transition front, etc.). This has very powerful implications in numerical schemes drawn directly on the material manifold (e.g., thermodynamically admissible volume-element scheme for the simulation of phase-transformation evolution).  相似文献   
32.
Summary Nonlinear thermoelastic continua with Fourier's type of heat conduction illustrate complex systems composed of internal and reaction-diffusion subsystems. An evolution equation is derived for the observable variable (deformation) when temperature effects are viewed as internal processes. This approach, which pertains to the so-called instantaneous wave analysis, shows that thermal losses accompanying the deformation wave correspond to the low-frequency approximation.  相似文献   
33.
In this work, we derive a novel thermo-mechanical theory for growth and remodeling of biological materials in morphogenetic processes. This second gradient hyperelastic theory is the first attempt to describe both volumetric growth and mass transport phenomena in a single-phase continuum model, where both stress- and shape-dependent growth regulations can be investigated. The diffusion of biochemical species (e.g. morphogens, growth factors, migration signals) inside the material is driven by configurational forces, enforced in the balance equations and in the set of constitutive relations. Mass transport is found to depend both on first- and on second-order material connections, possibly withstanding a chemotactic behavior with respect to diffusing molecules. We find that the driving forces of mass diffusion can be written in terms of covariant material derivatives reflecting, in a purely geometrical manner, the presence of a (first-order) torsion and a (second-order) curvature. Thermodynamical arguments show that the Eshelby stress and hyperstress tensors drive the rearrangement of the first- and second-order material inhomogeneities, respectively. In particular, an evolution law is proposed for the first-order transplant, extending a well-known result for inelastic materials. Moreover, we define the first stress-driven evolution law of the second-order transplant in function of the completely material Eshelby hyperstress.The theory is applied to two biomechanical examples, showing how an Eshelbian coupling can coordinate volumetric growth, mass transport and internal stress state, both in physiological and pathological conditions. Finally, possible applications of the proposed model are discussed for studying the unknown regulation mechanisms in morphogenetic processes, as well as for optimizing scaffold architecture in regenerative medicine and tissue engineering.  相似文献   
34.
M. Lazar  G. A. Maugin 《哲学杂志》2013,93(25):3853-3870
We investigate linear theories of incompatible micromorphic elasticity, incompatible microstretch elasticity, incompatible micropolar elasticity and the incompatible dilatation theory of elasticity (elasticity with voids). The incompatibility conditions and Bianchi identities are derived and discussed. The Eshelby stress tensor (static energy momentum) is calculated for such inhomogeneous media with microstructure. Its divergence gives the driving forces for dislocations, disclinations, point defects and inhomogeneities which are called configurational forces.  相似文献   
35.
36.
37.
38.
39.
A theory of gradient micropolar elasticity based on first gradients of distortion and bend-twist tensors for an isotropic micropolar medium has been proposed in Part I of this paper. Gradient micropolar elasticity is an extension of micropolar elasticity such that in addition to double stresses double couple stresses also appear. The strain energy depends on the micropolar distortion and bend-twist terms as well as on distortion and bend-twist gradients. We use a version of this gradient theory which can be connected to Eringen's nonlocal micropolar elasticity. The theory is used to study a straight-edge dislocation and a straight-wedge disclination. As one important result, we obtained nonsingular expressions for the force and couple stresses. For the edge dislocation the components of the force stress have extremum values near the dislocation line and those of the couple stress have extremum values at the dislocation line and for the wedge disclination the components of the force stress have extremum values at the disclination line and those of the couple stress have extremum values near the disclination line.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号