首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   9篇
  国内免费   3篇
化学   398篇
晶体学   4篇
力学   6篇
数学   5篇
物理学   93篇
  2023年   2篇
  2022年   6篇
  2021年   5篇
  2020年   3篇
  2019年   6篇
  2018年   5篇
  2016年   7篇
  2015年   8篇
  2014年   13篇
  2013年   12篇
  2012年   33篇
  2011年   27篇
  2010年   12篇
  2009年   11篇
  2008年   28篇
  2007年   21篇
  2006年   26篇
  2005年   34篇
  2004年   35篇
  2003年   21篇
  2002年   21篇
  2001年   15篇
  2000年   13篇
  1999年   14篇
  1998年   12篇
  1997年   5篇
  1996年   13篇
  1995年   4篇
  1994年   4篇
  1993年   7篇
  1992年   8篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   7篇
  1985年   2篇
  1984年   6篇
  1983年   3篇
  1982年   6篇
  1981年   3篇
  1980年   2篇
  1979年   6篇
  1978年   3篇
  1976年   3篇
  1975年   5篇
  1974年   5篇
  1973年   2篇
  1969年   2篇
排序方式: 共有506条查询结果,搜索用时 15 毫秒
21.
A simple method is given for calculating the potential energy of the diffuse double-layer interaction between two identical spherical colloidal particles in a symmetrical electrolyte solution with the help of Derjaguin's approximation. This method uses accurate analytic expressions for the corresponding interaction energy between two parallel similar plates obtained previously (Colloids Surf. A Physicochem. Eng. Asp. 146, 213 (1999); J. Colloid Interface Sci. 212, 130 (1999)). Agreement with numerical data provided by Honig and Mul (J. Colloid Interface Sci. 36, 258 (1971)) is excellent particularly for small particle separations. Copyright 2000 Academic Press.  相似文献   
22.
A set of coupled equations is given which determines the distributions of the electric potential and counterions in a system of two interacting identical ion-penetrable membranes of thickness d at separation h immersed in a salt-free medium containing only counterions. The solution to these coupled equations also gives the electrostatic repulsive force between the membranes. It is shown that the interaction force remains finite at h-->0, unlike the case of the interaction between two planar charged surfaces (d-->0), and that the interaction force becomes independent of the membrane fixed charge and membrane thickness d at very large h. Finally, an approximate single transcendental equation giving the solution to the coupled equations is derived.  相似文献   
23.
Approximate expressions are derived for the electrophoretic mobility of dilute cylindrical colloidal particles in a salt-free medium containing only counterions. The cylinder is assumed to be infinitely long. It is shown that as in the case of a spherical particle, there is a certain critical value of the particle surface charge separating two cases. When the particle surface charge is lower than the critical value (case 1), the electrophoretic mobility increases with increasing particle surface charge per unit length. When the particle surface charge is higher than the critical value (case 2), the mobility becomes constant (for a cylinder in a transverse field) or the increase in the electrophoretic mobility with the particle surface charge becomes suppressed (for a cylinder in a tangential field). These phenomena are caused by the effect of counterion condensation in the vicinity of the particle surface. The critical value of the particle charge is essentially independent of the particle volume fraction phi for the dilute case, unlike the case of a sphere, in which case the critical charge value is proportional to ln(1/phi).  相似文献   
24.
For a highly charged particle in an electrolyte solution, counterions are condensed very near the particle surface. The electrochemical potential of counterions accumulated near the particle surface is thus not affected by the applied electric field, so that the condensed counterions do not contribute to the particle electrophoretic mobility. In the present paper we derive an expression for the electrophoretic mobility mu(infinity) of a highly charged spherical particle of radius a and zeta potential zeta in the limit of very high zeta in a solution of general electrolytes with large ka (where k is the Debye-Hückel parameter) on the basis of our previous theory for the case of symmetrical electrolytes (H. Ohshima, J. Colloid Interface Sci. 263 (2003) 337). It is shown that zeta can formally be expressed as the sum of two components: the co-ion component, zetaco-ion, and the counterion component, zetacounterion (where zeta = zetaco-ion + zetacounterion) and that the limiting electrophoretic mobility mu(infinity) is given by mu(infinity) = epsilonr epsilon0 zetaco-ion(infinity)/eta + 0(1/ka), where zetaco-ion(infinity) is the high zeta-limiting form of zetaco-ion, epsilonr and eta are, respectively, the relative permittivity and viscosity of the solution, and epsilon0 is the permittivity of a vacuum. That is, the particle behaves as if its zeta potential were zetaco-ion(infinity), independent of zeta. For the case of a positively charged particle in an aqueous electrolyte solution at 25 degrees C, the value of zetaco-ion(infinity) is 35.6 mV for 1-1 electrolytes, 46.0 mV for 2-1 electrolytes, and 12.2 mV for 1-2 electrolytes. It is also found that the magnitude of mu(infinity) increases as the valence of co-ions increases, whereas the magnitude of mu(infinity) decreases as the valence of counterions increases.  相似文献   
25.
1,3-Dipolar cycloaddition between aromatic selenoaldehydes, generated by thermal retro Diels-Alder reaction of anthracene cycloadducts, and nitrile oxides or nitrile imines proceeded efficiently to give the corresponding [3+2] cycloadducts as a single isomer in good yields, being 1,4,2-oxaselenazoles or 1,3,4-selenadiazoles, respectively.  相似文献   
26.
A general electroacoustic theory is presented for the macroscopic electric field in a dilute suspension of spherical colloidal particles in an electrolyte solution, which consists of the colloid vibration potential (CVP) and the ion vibration potential (IVP), induced by an oscillating pressure gradient field due to an applied sound wave. This is a unified theory that unites previous theories for CVP and those for IVP. Approximate analytic expressions are derived for CVP and IVP. The obtained IVP expression agrees with Debye's formula that is corrected by taking into account the force acting on the electrolyte ions as a result of the pressure gradient in the sound wave. The obtained CVP expression is correct to the first order of the particle zeta potential and applicable for arbitrary kappaalpha, where kappa is the Debye-Hückel parameter and alpha is the particle radius. It is found that an Onsager relation holds between CVP and dynamic electrophoretic mobility. It is also shown that the CVP from particles with very small kappaalpha approaches IVP; that is, in the limit of very small kappaalpha a particle behaves like an ion.  相似文献   
27.
On the basis of a theory of Imai and Oosawa (Busseiron Kenkyu52, 42 (1952); 59, 99 (1953)), approximate analytic expressions for the surface charge density/surface potential relationship for a spherical colloidal particle in a salt-free (aqueous or nonaqueous) medium containing only counterions are derived. There is a certain critical value of the surface charge density (or the total surface charge) separating two distinct cases: low surface charge density case and high surface charge density case. In the latter case counterion condensation occurs in the vicinity of the particle surface. The results are in excellent agreement with numerical calculations for the case of dilute suspensions.  相似文献   
28.
A theory is presented for the electrophoretic mobility mu of dilute spherical soft particles (i.e., polyelectrolyte-coated particles) in salt-free media containing only counterions. As in the case of other types of particles (rigid particles and liquid drops) in salt-free media, there is a certain critical value of the particle charge separating two cases, the low-surface-charge case and the high-surface-charge case. For the low-charge case, the mobility is proportional to the particle charge and coincides with that of a soft particle in an electrolyte solution in the limit of very low electrolyte concentrations kappa-->0 (Hückel's limit), where kappa is the Debye-Hückel parameter. For the high-charge case, however, mu becomes essentially constant, independent of the particle charge, due to the counterion condensation effect.  相似文献   
29.
The effect of Coriolis force on the counter-current chromatographic separation was studied using centrifugal partition chromatography (CPC) with four different two-phase solvent systems including n-hexane-acetonitrile (ACN); tert-butyl methyl ether (MtBE)-aqueous 0.1% trifluoroacetic acid (TFA) (1:1); MtBE-ACN-aqueous 0.1% TFA (2:2:3); and 12.5% (w/w) polyethylene glycol (PEG) 1000-12.5% (w/w) dibasic potassium phosphate. Each separation was performed by eluting either the upper phase in the ascending mode or the lower phase in the descending mode, each in clockwise (CW) and counterclockwise column rotation. Better partition efficiencies were attained by the CW rotation in both mobile phases in all the two-phase solvent systems examined. The mathematical analysis also revealed the Coriolis force works favorably under the CW column rotation for both mobile phases. The overall results demonstrated that the Coriolis force produces substantial effects on CPC separation in both organic-aqueous and aqueous-aqueous two-phase systems.  相似文献   
30.
Explicit exact analytic expressions are obtained in the form of infinite series for the potential energy of the electrostatic interaction for the system of two dissimilar hard spheres with constant surface charge density in an electrolyte solution on the basis of the linearized Poisson-Boltzmann equation. The effects of the particle polarization, that is, the internal fields induced within tim interacting spheres, which are found to be of the order of instead of 1/κa (where κ is the Debye-Hückel parameter and a is the sphere radius), are taken into account. As in the case of the interaction at constant surface potential, the zeroth-order approximation to the interaction energy corresponds to the interaction energy that would be obtained if both spheres were ion-penetrable spheres ("soft" spheres) and to that obtained by the linear superposition approximation. The first-order approximation corresponds to the interaction energy that would be obtained if either sphere were a soft sphere, with the other being a hard sphere with constant surface charge density. The first-order correction term can be interpreted as the image interaction between the soft sphere and its image with respect to the hard sphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号