首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   3篇
化学   106篇
晶体学   1篇
力学   4篇
数学   24篇
物理学   26篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   5篇
  2014年   5篇
  2013年   13篇
  2012年   15篇
  2011年   13篇
  2010年   9篇
  2009年   8篇
  2008年   11篇
  2007年   18篇
  2006年   7篇
  2005年   6篇
  2004年   9篇
  2003年   6篇
  2002年   8篇
  2000年   1篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有161条查询结果,搜索用时 15 毫秒
91.
An exhaustive classification of matrix effects occurring when a sample preparation is performed prior to liquid-chromatography coupled to mass spectrometry (LC–MS) analyses was proposed. A total of eight different situations were identified allowing the recognition of the matrix effect typology via the calculation of four recovery values. A set of 198 compounds was used to evaluate matrix effects after solid phase extraction (SPE) from plasma or urine samples prior to LC–ESI-MS analysis. Matrix effect identification was achieved for all compounds and classified through an organization chart. Only 17% of the tested compounds did not present significant matrix effects.  相似文献   
92.
A mechanism for the photochemical conversion of 2-vinyl-1,3-terphenyl to 8,9a-dihydrophenanthrene (Lewis, F. D.; Zuo, X.; Gevorgyan, V.; Rubin, M. J. Am. Chem. Soc. 2002, 124, 13664-13665) is presented in this study, based on ab initio restricted active space self-consistent field calculations and a molecular mechanics-valence bond dynamics simulation of a model system: the syn isomer of 2-vinylbiphenyl. An extended crossing seam between the ground and first excited electronic states was found to be largely responsible for the efficient photocyclization of the photochemically active syn isomer. This mechanism is nonadiabatic in nature, with an excited-state reaction pathway approaching the crossing region during the initial stage of cyclization. Dynamics simulation shows that this seam is easily accessible by vibrational motion in the branching space, once a small barrier is passed on the S1 excited-state potential energy surface. Ultrafast radiationless decay to the ground state then follows, and the cyclization is completed on this surface. A second possible mechanism was identified, which involves complete adiabatic cyclization on the S1 surface, with decay to the ground state (at a different conical intersection) only taking place once the product is formed. Thus, there is a competition between these two mechanisms-nonadiabatic and adiabatic-governed by the dynamics of the system. A large quantum yield is predicted for the photocyclization of the syn isomer of 2-vinylbiphenyl and 2-vinyl-1,3-terphenyl, in agreement with experimental observations.  相似文献   
93.
94.
Facile synthetic approaches to 2‐phenylquinolin‐4‐amines containing an aminoalkyl group at N4 of the quinolin‐4‐amine and amino or aminoalkyl groups at the phenyl moiety are presented.  相似文献   
95.
The photophysics of the pyrene radical cation, a polycyclic aromatic hydrocarbon (PAH) and a possible source of diffuse interstellar bands (DIBs), is investigated by means of hybrid molecular mechanics-valence bond (MMVB) force field and multiconfigurational CASSCF and CASPT2 ab initio methods. Potential energy surfaces of the first three electronic states D 0, D 1, and D 2 are calculated. MMVB geometry optimizations are carried out for the first time on a cationic system; the results show good agreement with CASSCF optimized structures, for minima and conical intersections, and errors in the energy gaps are no larger than those found in our previous studies of neutral systems. The presence of two easily accessible sloped D 1/D 2 and D 0/D 1 conical intersections suggests the pyrene radical cation is highly photostable, with ultrafast nonradiative decay back to the initial ground state geometry predicted via a mechanism similar to the one found in the naphthalene radical cation.  相似文献   
96.
In this article, we compare and contrast the RASSCF, ONIOM and MMVB electronic structure methods for calculating relaxation paths on potential energy surfaces of the excited states of large molecules, and for locating any resulting conical intersections at which nonadiabatic decay can take place. Each method is treated here as an approximation to CASSCF, which we choose as our reference level of theory, but which becomes prohibitively expensive computationally for large molecules. Both MMVB and ONIOM are hybrid computational methods – combining different levels of theory in an energy plus derivatives calculation at a particular molecular geometry – but they differ fundamentally in that MMVB is a hybrid-atom method, whereas ONIOM is a hybrid-molecule method. We explain this distinction through four representative applications: the photostability of pyracylene (studied with CASSCF, RASSCF, MMVB); large geometry changes in the singlet excited states of triangulene (studied with MMVB); a model for interstitial nickel defects in a synthetic diamond lattice (studied with ONIOM CAS:UFF); and the photochemical [4 + 4] cycloaddition of cyclohexadiene to naphthalene (studied with ONIOM CAS:MMVB). We show that each method is more appropriate for a particular type of photochemical problem. This article is part perspective, part review, and contains new results for three multi-state or photoinduced processes in complex systems.  相似文献   
97.
The potential and applicability of UHPSFC–MS/MS for anti-doping screening in urine samples were tested for the first time. For this purpose, a group of 110 doping agents with diverse physicochemical properties was analyzed using two separation techniques, namely UHPLC–MS/MS and UHPSFC–MS/MS in both ESI+ and ESI− modes. The two approaches were compared in terms of selectivity, sensitivity, linearity and matrix effects. As expected, very diverse retentions and selectivities were obtained in UHPLC and UHPSFC, proving a good complementarity of these analytical strategies. In both conditions, acceptable peak shapes and MS detection capabilities were obtained within 7 min analysis time, enabling the application of these two methods for screening purposes. Method sensitivity was found comparable for 46% of tested compounds, while higher sensitivity was observed for 21% of tested compounds in UHPLC–MS/MS and for 32% in UHPSFC–MS/MS. The latter demonstrated a lower susceptibility to matrix effects, which were mostly observed as signal suppression. In the case of UHPLC–MS/MS, more serious matrix effects were observed, leading typically to signal enhancement and the matrix effect was also concentration dependent, i.e., more significant matrix effects occurred at the lowest concentrations.  相似文献   
98.
Progressive microcracking in brittle or quasi-brittle materials, as described by damage models, presents a softening behavior that in turn requires the use of regularization methods in order to maintain objective results. Such regularization methods, which describe interactions between points, provide some general properties (including objectivity and the non-alteration of a uniform field) as well as drawbacks (damage initiation, free boundary).A modification of the nonlocal integral regularization method that takes the stress state into account is proposed in this contribution. The orientation and intensity of nonlocal interactions are modified in accordance with the stress state. The fundamental framework of the original nonlocal method has been retained, making it possible to maintain the method’s advantages. The modification is introduced through the weight function, which in this modified version depends not only on the distance between two points (as for the original model) but also on the stress state at the remote point.The efficiency of this novel approach is illustrated using several examples. The proposed modification improves the numerical solution of problems observed in numerical simulations involving regularization techniques. Damage initiation and propagation in mode I as well as shear band formation are analyzed herein.  相似文献   
99.
Hydrogen/deuterium exchange (HDX) methods generate useful information on protein structure and dynamics, ideally at the individual residue level. Most MS-based HDX methods involve a rapid proteolytic digestion followed by LC/MS analysis, with exchange kinetics monitored at the peptide level. Localizing specific sites of HDX is usually restricted to a resolution the size of the host peptide because gas-phase processes can scramble deuterium throughout the peptide. Subtractive methods may improve resolution, where deuterium levels of overlapping and nested peptides are used in a subtractive manner to localize exchange to smaller segments. In this study, we explore the underlying assumption of the subtractive method, namely, that the measured back exchange kinetics of a given residue is independent of its host peptide. Using a series of deuterated peptides, we show that secondary structure can be partially retained under quenched conditions, and that interactions between peptides and reversed-phase LC columns may both accelerate and decelerate residue HDX, depending upon peptide sequence and length. Secondary structure is induced through column interactions in peptides with a solution-phase propensity for structure, which has the effect of slowing HDX rates relative to predicted random coil values. Conversely, column interactions can orient random-coil peptide conformers to accelerate HDX, the degree to which correlates with peptide charge in solution, and which can be reversed by using stronger ion pairing reagents. The dependency of these effects on sequence and length suggest that subtractive methods for improving structural resolution in HDX-MS will not offer a straightforward solution for increasing exchange site resolution.
Figure
?  相似文献   
100.
The hydrogen isotope ratio (HIR) of body water and, therefore, of all endogenously synthesized compounds in humans, is mainly affected by the HIR of ingested drinking water. As a consequence, the entire organism and all of its synthesized substrates will reflect alterations in the isotope ratio of drinking water, which depends on the duration of exposure. To investigate the effect of this change on endogenous urinary steroids relevant to doping-control analysis the hydrogen isotope composition of potable water was suddenly enriched from -50 to 200 ‰ and maintained at this level for two weeks for two individuals. The steroids under investigation were 5β-pregnane-3α,20α-diol, 5α-androst-16-en-3α-ol, 3α-hydroxy-5α-androstan-17-one (ANDRO), 3α-hydroxy-5β-androstan-17-one (ETIO), 5α-androstane-3α,17β-diol, and 5β-androstane-3α,17β-diol (excreted as glucuronides) and ETIO, ANDRO and 3β-hydroxyandrost-5-en-17-one (excreted as sulfates). The HIR of body water was estimated by determination of the HIR of total native urine, to trace the induced changes. The hydrogen in steroids is partly derived from the total amount of body water and cholesterol-enrichment could be calculated by use of these data. Although the sum of changes in the isotopic composition of body water was 150 ‰, shifts of approximately 30 ‰ were observed for urinary steroids. Parallel enrichment in their HIR was observed for most of the steroids, and none of the differences between the HIR of individual steroids was elevated beyond recently established thresholds. This finding is important to sports drug testing because it supports the intended use of this novel and complementary methodology even in cases where athletes have drunk water of different HIR, a plausible and, presumably, inevitable scenario while traveling.  相似文献   
[首页] « 上一页 [5] [6] [7] [8] [9] 10 [11] [12] [13] [14] [15] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号