首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   2篇
化学   92篇
力学   1篇
数学   9篇
物理学   18篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   7篇
  2018年   1篇
  2016年   5篇
  2015年   5篇
  2014年   8篇
  2013年   6篇
  2012年   8篇
  2011年   9篇
  2010年   2篇
  2009年   4篇
  2008年   9篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1992年   3篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1977年   1篇
  1959年   1篇
排序方式: 共有120条查询结果,搜索用时 0 毫秒
101.
Biomolecular motors, in particular motor proteins, are ideally suited to introduce chemically powered movement of selected components into devices engineered at the micro- and nanoscale level. The design of such hybrid "bio/nano"-devices requires suitable synthetic environments, and the identification of unique applications. We discuss current approaches to utilize active transport and actuation on a molecular scale, and we give an outlook to the future.  相似文献   
102.
This work focuses on the interaction of four representative NSAIDs (nimesulide, indomethacin, meloxicam, and piroxicam) with different membrane models (liposomes, monolayers, and supported lipid bilayers), at different pH values, that mimic the pH conditions of normal (pH 7.4) and inflamed cells (pH 5.0). All models are composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) which is a representative phospholipid of most cellular membranes. Several biophysical techniques were employed: Fluorescence steady-state anisotropy to study the effects of NSAIDs in membrane microviscosity and thus to assess the main phase transition of DPPC, surface pressure-area isotherms to evaluate the adsorption and penetration of NSAIDs into the membrane, IRRAS to acquire structural information of DPPC monolayers upon interaction with the drugs, and AFM to study the changes in surface topography of the lipid bilayers caused by the interaction with NSAIDs. The NSAIDs show pronounced interactions with the lipid membranes at both physiological and inflammatory conditions. Liposomes, monolayers, and supported lipid bilayers experiments allow the conclusion that the pH of the medium is an essential parameter when evaluating drug-membrane interactions, because it conditions the structure of the membrane and the ionization state of NSAIDs, thereby influencing the interactions between these drugs and the lipid membranes. The applied models and techniques provided detailed information about different aspects of the drug-membrane interaction offering valuable information to understand the effect of these drugs on their target membrane-associated enzymes and their side effects at the gastrointestinal level.  相似文献   
103.
Trichomonads are flagellate protists, and among them Trichomonas vaginalis and Tritrichomonas foetus are the most studied because they are parasites of the urogenital tract of humans and cattle, respectively. Microscopy provides new insights into the cell biology and morphology of these parasites, and thus allows better understanding of the main aspects of their physiology. Here, we review the ultrastructure of T. foetus and T. vaginalis, stressing the participation of the axostyle in the process of cell division and showing that the pseudocyst may be a new form in the trichomonad cell cycle and not simply a degenerative form. Other organelles, such as the Golgi and hydrogenosomes, are also reviewed. The virus present in trichomonads is discussed.  相似文献   
104.
Single-step fusion-based affinity purification of proteins with pH-controllable linkers was carried out in a fluidic device. The linkers were previously derived from self-splicing protein elements called inteins. Two different linkers were generated to solve two distinct separation problems: one for rapid single-step affinity purification of a wide range of proteins, and the other specifically for the purification of cytotoxic proteins. Scale-down factors of 185 resulted in separations in a 27 microl bed-volume. A rotating CD format was chosen because of its simplicity in effecting fluid movement through centrifugal force without the complications associated with electro-osmosis and other pumping methods. The design and fabrication of the fluidic device and the protein purification process are described. This work, which demonstrates the purification of active proteins by two distinct fluidic separations, is widely applicable to small-scale massively parallel proteomic separations.  相似文献   
105.
Current optical polymeric materials for advanced fiber laser development are susceptible to degradation due to the heat generated in high power usage. A suitable replacement light stripping material was explored to overcome this problem by examining optical and physical properties such as transmission/absorption, refractive index, thermal conductivity, and thermal stability. The synthesis and characterization of two new polyurea/silica ORMOSILs (ORganically MOdified SILicates) suitable for high temperature (up to 300 °C) optical applications are reported herein. A one-pot, room temperature synthesis is based upon commercially available bis-isocyanates and an amino-silane. These materials exhibit the combined traits of both glass and polymer by displaying optical clarity over a wide range of wavelengths stretching from the edge of the UV (250 nm) to well into the NIR (2,000 nm), refractive indices in the visible spectrum (n = 1.50–1.63), thermal conductivities of 0.26 ± 0.09 W/mK (ORMOSIL-A) and 0.27 ± 0.07 W/mK (ORMOSIL-B), and thermal stabilities up to 300 °C. The hybrid materials were found to be easily processed into films but thick casts (>2 mm) were subject to increased rates of cracking and longer curing times. Although this is typical of sol–gel chemistries, the organic constituents of ORMOSILs reduce this effect as compared to purely inorganic sol–gels. The effect of thermal aging on the materials’ properties will also be presented as well as a comparison of these materials and the current state of the art light stripping material.  相似文献   
106.
Abstract

Assimilation of selenium (Se) by Escherichia coli as (75Se)-selenite, selenate, selenomethionine, selenocystine and Se?CH3-selenocystine revealed that (a) selenoamino acids from a culture media are more completely assimilated than selenite or selenate and (b) that the amount of selenite is assimilated three to four times selenate. Most (>95%) of the Se assimilated by E. coli could not be solubilized by sonication and ethanol extraction but much (28% to 70%) of the Se, except Se from selenomethionine, was removed by alkaline dialysis. Se from selenocystine and from Se?CH3-selenocystine dialyzed from intact cells, whereas Se from selenite and selenate did not. Dialyzable Se is that Se probably present in selenotrisulfide (R?S?Se?S?R) bonds or bound nonspecifically. Analysis of the soluble Se metabolites from selenite, selenate, selenomethionine and selenocystine showed that E. coli produces at least one major metabolic product common to all substrates which upon chromatography appeared to be selenocysteic acid. In monogastric animals selenite and selenate Se does not enter the primary protein structure as amino acids yet metabolites of selenite, selenate and selenocystine produced by E. coli could enter the primary protein structure of animals in minute amounts.  相似文献   
107.
108.
Passos ML  Saraiva ML  Santos JL  Reis S  Lúcio M  Lima JL 《Talanta》2011,84(5):1309-1313
According to the current demands of environmentally friendly analytical chemistry and with a view to achieving lower reagent consumption with improved analytical performance, an automatic methodology composed of a photoreactor and fluorimetric detection (λexc = 287 nm, λem = 378 nm) was developed. To this end, a sequential injection analysis (SIA) system was developed for indomethacin determination using ultra-violet (UV) light which promotes an increase in the fluorescence of indomethacin. This increase in sensitivity makes it possible to apply this methodology to a dissolution test and to determine indomethacin in pharmaceutical formulations.The calibration graph for indomethacin was linear between 4.10 × 10−6 and 9.00 × 10−5 mol L−1and the detection limit was 1.23 × 10−6 mol L−1. The method was proven to be reproducible with a R.S.D. < 5% and sampling rate of approximately 20 per hour. The potential effect of several compounds commonly used as excipients on analytical signals was studied and no interfering effect was observed. Statistical evaluation at the 95% confidence level showed good agreement between the results obtained for the pharmaceutical samples with both the SIA system and comparison batch procedures.  相似文献   
109.
110.
Abstract— The mutagenicity of photodynamic therapy (PDT) using red light and either Photofrin® (porfimer sodium) (PF) or aluminum phthalocyanine (AIPc) as the photosensitizer was determined at the thymidine kinase (TK) locus in the human lymphoblastic cell lines, TK6 and WTK1, and was compared to the mutagenicity of UVC and X-radia-tion in these cells as well as the mutagenicity of PDT in murine L5178Y lymphoblastic cell lines. Photodynamic therapy was found not to be mutagenic in TK6 cells, which possess an active p53 gene and which are relatively deficient in recombination and repair of DNA double-strand breaks. In contrast, PDT with either sensitizer was significantly mutagenic in WTK1 cells, which harbor an inactivating mutation in the p53 gene and are relatively efficient in recombination and double-strand break repair as compared to TK6 cells. The induced mutant frequency in WTK1 cells with PF as the photosensitizer was similar to that induced by UVC radiation but lower than that induced by X-radiation at equitoxic faiences/ doses. The mutant frequency induced by PDT in WTK1 cells with either photosensitizer was much lower than that induced in murine lymphoblasts at equitoxic fluences. The TK6 and WTK1 cells did not differ in their sensitivity to the cytotoxic effects of PDT, but the level of PDT-induced apoptosis was greater in TK6 than in WTK1 cells. These results indicate that the mutagenicity of PDT varies in different types of cells and may be related to the repair capabilities as well as the p53 status of the cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号