首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13931篇
  免费   396篇
  国内免费   83篇
化学   10137篇
晶体学   140篇
力学   277篇
数学   1620篇
物理学   2236篇
  2023年   68篇
  2022年   93篇
  2021年   134篇
  2020年   188篇
  2019年   180篇
  2018年   149篇
  2017年   123篇
  2016年   267篇
  2015年   265篇
  2014年   327篇
  2013年   594篇
  2012年   769篇
  2011年   966篇
  2010年   490篇
  2009年   438篇
  2008年   905篇
  2007年   871篇
  2006年   946篇
  2005年   960篇
  2004年   828篇
  2003年   682篇
  2002年   630篇
  2001年   202篇
  2000年   197篇
  1999年   165篇
  1998年   174篇
  1997年   203篇
  1996年   216篇
  1995年   128篇
  1994年   155篇
  1993年   139篇
  1992年   130篇
  1991年   102篇
  1990年   84篇
  1989年   86篇
  1988年   87篇
  1987年   104篇
  1986年   77篇
  1985年   128篇
  1984年   124篇
  1983年   89篇
  1982年   106篇
  1981年   120篇
  1980年   119篇
  1979年   96篇
  1978年   72篇
  1977年   76篇
  1976年   58篇
  1975年   57篇
  1973年   45篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
81.
LetX be ann-element set and letA and? be families of subsets ofX. We say thatA and? are crosst-intersecting if |A ∩ B| ≥ t holds for all A ∈A and for allB ∈ ?. Suppose thatA and ? are crosst-intersecting. This paper first proves a crosst-intersecting version of Harper's Theorem:
  1. There are two crosst-intersecting Hamming spheresA 0,? 0 with centerX such that |A| ≤ |A 0| and|?| ≤ |? 0| hold.
  2. Suppose thatt ≥ 2 and that the pair of integers (|A) is maximal with respect to direct product ordering among pairs of crosst-intersecting families. Then,A and? are Hamming spheres with centerX.
Using these claims, the following conjecture of Frankl is proven:
  1. Ifn + t = 2k ? 1 then |A| |?| ≤ max \(\left\{ {\left( {K_k^n + \left( {_{k - 1}^{n - 1} } \right)} \right)^2 ,K_k^n K_{k - 1}^n } \right\}\) holds, whereK l n is defined as \(\left( {_n^n } \right)\left( {_{n - 1}^n } \right) + \cdots + \left( {_l^n } \right).\)
  2. Ifn + t = 2k then |A| |? ≤ (K k n )2 holds.
The extremal configurations are also determined.  相似文献   
82.
Consider the Schrödinger equation –u+V(x)u=u on the intervalI, whereV(x)0 forxI and where Dirichlet boundary conditions are imposed at the endpoints ofI. We prove the optimal bound
  相似文献   
83.
84.
1,4-Diamino-2-butyne was prepared from 1,4-dichloro-2-butyne via 1,4-diazido-2-butyne. Bis(amino acid) derivatives of 1,4-diamino-2-butyne having the general structure (Boc-Xxx-NHCH2C[triple bond])2 (Xxx = Ala, Phe and Met) were prepared and examined by 1H NMR spectroscopy. Using chemical shift, coupling constant and DMSO titration data it is found that these compounds adopt a C2-symmetric turn conformation featuring two intramolecular hydrogen bonds.  相似文献   
85.
A complete and consistent set of 95 Benson group additive values (GAV) for the standard enthalpy of formation of hydrocarbons and hydrocarbon radicals at 298 K and 1 bar is derived from an extensive and accurate database of 233 ab initio standard enthalpies of formation, calculated at the CBS-QB3 level of theory. The accuracy of the database was further improved by adding newly determined bond additive corrections (BAC) to the CBS-QB3 enthalpies. The mean absolute deviation (MAD) for a training set of 51 hydrocarbons is better than 2 kJ mol(-1). GAVs for 16 hydrocarbon groups, i.e., C(C(d))(3)(C), C-(C(d))(4), C-(C(t))(C(d))(C)(2), C-(C(t))(C(d))(2)(C), C-(C(t))(C(d))(3), C-(C(t))(2)(C)(2), C-(C(t))(2)(C(d))(C), C-(C(t))(2)(C(d))(2), C-(C(t))(3)(C), C-(C(t))(3)(C(d)), C-(C(t))(4), C-(C(b))(C(d))(C)(H), C-(C(b))(C(t))(H)(2), C-(C(b))(C(t))(C)(H), C-(C(b))(C(t))(C)(2), C(d)-(C(b))(C(t)), for 25 hydrocarbon radical groups, and several ring strain corrections (RSC) are determined for the first time. The new parameters significantly extend the applicability of Benson's group additivity method. The extensive database allowed an evaluation of previously proposed methods to account for non-next-nearest neighbor interactions (NNI). Here, a novel consistent scheme is proposed to account for NNIs in radicals. In addition, hydrogen bond increments (HBI) are determined for the calculation of radical standard enthalpies of formation. In particular for resonance stabilized radicals, the HBI method provides an improvement over Benson's group additivity method.  相似文献   
86.
The absorption of two kinds of insulin (from porcine or bovine pancreas) from the rectum of rabbits after the administration of hollow-type suppositories containing insulin and glyceryl-1-monooctanoate (GMO) as an absorption-enhancing agent was investigated. Two types of suppositories were employed: type I containing insulin in an aqueous solution (approx. 25 IU/mg/100 microliters citric buffer solution at pH 3.0) in the cavity of the suppository and GMO mixed with a base material (Witepsol H-15), and type II containing insulin in a crystalline form in the same amount as in type I. Without GMO, the insulin and glucose levels in plasma were unchanged, whereas a marked increase in the plasma levels of insulin and a decrease of glucose concentrations were found following coadministration of insulin and GMO by the type I suppository. Similar enhancement of rectal absorption of insulin was obtained from porcine and bovine sources. In the case of the crystalline insulin, despite the use of the same amount of GMO, porcine insulin was more efficiently absorbed than bovine insulin by the type II suppository. GMO enhances the absorption of insulin in an aqueous solution or a crystalline form, and the dissolution rate of insulin may be an important factor in the rectal absorption of insulin.  相似文献   
87.
The precision of isotopic measurements of Pb by thermal ionization mass spectrometry (TIMS) is limited by the fact that this element does not possess an invariant isotope ratio that can be used for the correction of mass fractionation by internal normalization. Multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS) can overcome this limitation, because with plasma ionization, elements with overlapping mass ranges are thought to display identical mass discrimination. With respect to Pb, this can be exploited by the addition of Tl to the sample solutions; the mass discrimination factor obtained for Tl can then be used for the correction of the measured Pb isotope ratios. In this article we present the results of a detailed study that investigates the accuracy and precision of such an external correction technique for mass discrimination based upon the results of multiple analyses of a mixed standard solution of NIST SRM-981 Pb and SRM-997 Tl. Our data indicate that normalization of the Pb isotope ratios to the certified isotopic composition of SRM-997 Tl produces Pb isotopic results that are significantly lower than recently published reference values by TIMS. This systematic offset can be eliminated by renormalization of the Pb data to a different Tl isotopic composition to obtain an empirically determined mass discrimination factor for Pb that generates accurate results. It is furthermore shown that a linear law is least suited for the correction of mass discrimination, whereas a power or exponential law function provide significantly more accurate and precise results. In detail, it appears that a power law may provide the most appropriate correction procedure, because the corrected Pb isotope ratios display less residual correlations with mass discrimination compared to the exponentially corrected data. Using an exponential or power law correction our results, obtained over a period of over seven months, display a precision (2σ) of better than 60 parts per million (ppm) for 208Pb/206Pb and 207Pb/206Pb and of better than 350 ppm for 206Pb/204Pb, 207Pb/204Pb/204Pb, and 208Pb/204Pb. This represents a significant improvement compared to conventional TIMS techniques and demonstrates the potential of MC-ICPMS for routine, high-precision measurements of Pb isotopic compositions.  相似文献   
88.
89.
Deprotonation of 1,2-C(70)H(2) with TBAOH, followed by alkylation with methyl bromoacetate, results in formation of a C1-monoalkylated 1,2-dihydro-C(70) derivative. The position of the alkyl group (C1) was established by NMR spectroscopy and comparison with literature spectra of C2-monoalkylated analogs. Presumably, C1-alkylation is the major process due to selective deprotonation of 1,2-C(70)H(2) at C1. Substitution of benzyl bromide for methyl bromoacetate results in rapid dialkylation, unless the amount of base is carefully controlled, in which case C1-monobenzylation is the major process. This methodology for alkylation at C1 is complimentary to methods for the C2-monoalkylation of C(70) with Zn and methyl bromoacetate.  相似文献   
90.
The photophysical properties of seven new 8-(p-substituted)phenyl analogues of 4,4-difluoro-3,5-dimethyl-8-(aryl)-4-bora-3a,4a-diaza-s-indacene (derivatives of the well-known fluorophore BODIPY) in several solvents have been studied by means of absorption and steady-state and time-resolved fluorimetry. For each compound, the fluorescence quantum yield and lifetime are lower in solvents with higher polarity owing to an increase in the rate of nonradiative deactivation. Increasing the electron withdrawing strength of the p-substituent on the phenyl group in position 8 also leads to lower fluorescence quantum yields and lifetimes. When the p-substituent on the phenyl group in position 8 is a tertiary amine [8-(4-piperidinophenyl), 8-(4-N,N-dimethylaminophenyl), and 8-(4-morpholinophenyl)], the low quantum yields of these compounds in more polar solvents can be rationalized by the inversion of the energy levels of an apolar, highly fluorescent and a polar, nonfluorescent excited state, where charge transfer from the tertiary amine to the BODIPY unit occurs. These amine analogues can be protonated at low pH in aqueous solution. Fluorescence titrations yielded pK(a) values of their conjugate ammonium salts which are in agreement with the electron donating tendency of the amine group: piperidino (4.15) > dimethylamino (2.37) > morpholino (1.47), with the pK(a) values in parentheses. The rate constant of radiative deactivation (k(f)) is the same for all compounds in all solvents studied (k(f) = 1.4 x 10(8) s(-1)).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号