Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function of the various metal cofactors present in the enzyme. Here, all iron-containing cofactors of the SH were investigated by 57Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters, which is consistent with the amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD+-reducing hydrogenases. For the first time, Fe–CO and Fe–CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe–CO modes. The present approach explores the complex vibrational signature of the Fe–S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors. 相似文献
Adenosine‐to‐inosine deamination can be re‐addressed to user‐defined mRNAs by applying phosphothioate/2′‐methoxy‐modified guideRNAs. Dense chemical modification of the guideRNA clearly improves performance of the covalent conjugates inside the living cell. Furthermore, careful positioning of a few modifications controls editing selectivity in vitro and was exploited for the challenging repair of the Factor 5 Leiden missense mutation. 相似文献
From blue to red: While four π‐conjugated nitrophenolates absorb within a relatively narrow region in solution, they cover the entire visible spectrum when isolated in vacuo (see picture). The work combines gas‐ and solution‐phase spectroscopy and provides the first benchmark of theoretical excitation energies for nitrophenolates.
Polylactide (PLA) is a potential candidate for the partial replacement of petrochemical polymers because it is biodegradable and produced from annually renewable resources. Characterized by its high tensile strength, unfortunately the brittleness and rigidity limit its applicability. For a great number of applications such as packaging, fibers, films, etc., it is of high interest to formulate new PLA grades with improved flexibility and better impact properties.In order to develop PLA-based biodegradable packaging, the physico-mechanical properties of commercially available PLA should be modified using biodegradable plasticizers. To this end, PLA was melt-mixed with blends of tributyl citrate and more thermally stable low molecular weight block copolymers based on poly(d,l-lactide) and poly(ethylene glycol) of different molecular weights and topologies. The copolymers have been synthesized using a potassium based catalyst which is expected to be non toxic and were characterized by utilization of TGA, GPC and NMR techniques.The effect of the addition of up to 25 wt% plasticizer on the thermo-mechanical properties of PLA was investigated and the results were correlated with particular attention to the relationship between properties and applications.To confirm the safety of the catalyst used for the preparation of the copolymers, in vitro cytotoxicity tests have been carried out using MTS assay and the results show their biocompatibility in the presence of the fibroblast cells.Compost biodegradation experiments carried out using neat and plasticized PLA have shown that the presence of plasticizers accelerates the degradation of the PLA matrix. 相似文献
A simple and reliable protocol for the synthesis of TADDOL-derived monodentate ligands is reported. The reaction of the requisite TADDOL with PCl3 is immediately followed by the treatment of the crude intermediate with both nitrogen and carbon nucleophiles. Several previously unknown or difficult-to-make phosphoramidite and phosphonite ligands L1–L3 and L4–L9 were accessed using this novel procedure. 相似文献
Nonlinear Dynamics - In this paper, we consider a 5-dimensional Hindmarsh–Rose neuron model. This improved version of the original model shows rich dynamical behaviors, including a chaotic... 相似文献
We present some features of the smooth structure and of the canonical stratification on the orbit space of a proper Lie groupoid. One of the main features is that of Morita invariance of these structures—it allows us to talk about the canonical structure of differentiable stratified space on the orbispace (an object analogous to a separated stack in algebraic geometry) presented by the proper Lie groupoid. The canonical smooth structure on an orbispace is studied mainly via Spallek’s framework of differentiable spaces, and two alternative frameworks are then presented. For the canonical stratification on an orbispace, we extend the similar theory coming from proper Lie group actions. We make no claim to originality. The goal of these notes is simply to give a complementary exposition to those available and to clarify some subtle points where the literature can sometimes be confusing, even in the classical case of proper Lie group actions. 相似文献