首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
化学   6篇
物理学   19篇
  2021年   3篇
  2020年   10篇
  2019年   5篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2001年   1篇
排序方式: 共有25条查询结果,搜索用时 281 毫秒
11.
Reduced graphene oxide (rGO) is a two-dimensional material, which is attracting increasing attention due to its special properties. It can be obtained by laser or ion beam irradiations of pristine graphene oxide (GO). It shows high mechanical resistance, considerable electric and thermal conductivity. All these rGO characteristics together with the high number of molecular species that can be embedded between its layers, make graphene oxide a potential material for electronic sensors or efficient support on which conductive strips, condensers, and micrometric electronic devices can be designed. In particular, as it is described in this paper, it is possible to carry out high spatial resolution lithography in GO by using a focused laser or micro ion beam in order to design macro, micro, and submicron geometrical structures. The use of the reduced graphene oxide for the laser and ion beam fabrication of electrical resistances and capacitances is presented.  相似文献   
12.
Proton acceleration can be induced by non-equilibrium plasma developed by high-intensity laser pulses, at 1016 W/cm2, irradiating different types of thin polyethylene targets. The process of proton acceleration and directive yield emission was investigated, optimizing the laser parameters, the irradiation conditions, and the target properties. The use of 600 J pulse energy, a laser focalization inducing self-focusing effects and advanced targets with embedded nanoparticles and optimal thicknesses, has permitted to accelerate forward protons up to the energies of about 6 MeV and amount of the order of 1015 H+/pulse. High proton energy is obtained using thin foils enriched with gold nanoparticles, whereas high proton yield is obtained using targets with a thickness of about 10 μm. The plasma diagnostics using SiC semiconductor detectors in time-of-flight configuration was fundamental to monitor the optimal conditions to improve the plasma processes concerning the ion acceleration and the X-ray and relativistic electron emission.  相似文献   
13.
Graphene oxide (GO) foils were irradiated by using different fluences of an infrared nanosecond pulsed laser and characterized before and after the laser irradiation. The produced laser ablation was investigated as well as the generated plasma. Optical and AFM microscopies, mass quadrupole spectrometry, Rutherford backscattering analysis and X-ray photoelectron spectroscopy were used to analyze the irradiated GO foils. Results demonstrated that the GO loses oxygen with the laser irradiation becoming richer in sp2-hybridized carbon content.  相似文献   
14.
Non-equilibrium plasma was obtained by irradiating Al foils in vacuum with a femtosecond (fs) laser at intensities of the order of 1018 W/cm2. Protons and other light ions were accelerated in the forward direction by using the target-normal-sheath acceleration regime. Time-of-flight technique was employed to measure the ions' kinetic energy using SiC detectors placed at known distances and angles. The ion acceleration was monitored under different conditions of laser focal position, laser pulse energy, and laser contrast. The target was irradiated using different thicknesses and anti-reflecting graphene films. By optimizing the laser parameters, irradiation conditions, and target properties, it was possible to accelerate up to 2.3 MeV per charge state, as will be presented and discussed.  相似文献   
15.
X-rays and forward ion emission from laser-generated plasma in the Target Normal Sheath Acceleration regime of different targets with 10-μm thickness, irradiated at Prague Asterix Laser System (PALS) laboratory at about 1016 W/cm2 intensity, employing a 1,315 nm-wavelength laser with a 300-ps pulse duration, are investigated. The photon and ion emissions were mainly measured using Silicon Carbide (SiC) detectors in time-of-flight configuration and X-ray streak camera imaging. The results show that the maximum proton acceleration value and the X-ray emission yield growth are proportional to the atomic number of the irradiated targets. The X-ray emission is not isotropic, with energies increasing from 1 keV for light atomic targets to about 2.5 keV for heavy atomic targets. The laser focal position significantly influences the X-ray emission from light and heavy irradiated targets, indicating the possible induction of self-focusing effects when the laser beam is focalized in front of the light target surface and of electron density enhancement for focalization inside the target.  相似文献   
16.
A hybrid film consisting of graphene oxide covered with poly(dimethylsiloxane) was prepared via spin coater and followed by thermal annealing to improve the bond strength of the polymerized systems. Direct patterning on both graphene oxide and hybrid graphene oxide–poly(dimethylsiloxane) foils by ion microbeam was performed to induce localized reduction in the ion irradiated material. It is well established that the ion irradiation of graphene oxide induces modifications in its electrical, mechanical, and optical properties and disorder in the carbon crystal structure and defect production. The presence of poly(dimethylsiloxane) can be useful as it confers flexibility to the produced pattern and oxygen permeability from the graphene oxide surface. Rutherford backscattered spectroscopy and elastic recoil detection analysis were performed to evaluate the compositional changes in the composite. Atomic force microscopy studied the pattern fidelity. The electrical conductivity of the hybrid material was used to evaluate the changes induced during the proton irradiation of the material.  相似文献   
17.
ABSTRACT

Reduced graphene oxide (rGO) films can be employed as ion strippers in an accelerator. They show some advantages with respect to the graphite foils, due to their high thermal and electrical conductivity, low density, high mechanical resistance and high stability. Thin graphene oxide (GO) films with a sub-micron thickness have been synthesized and transformed into reduced GO (rGO) by ion beam irradiations. Physical characterizations of the pristine and ion irradiated GO films have been performed. Measurements of stripping efficiency have been carried out by using helium, lithium, carbon and oxygen ion beams. The rGO stripper films demonstrate a significantly high charge production, comparable to that of the graphite films but with the advantage of a longer lifetime.  相似文献   
18.
Advanced targets based on graphene oxide and gold thin film were irradiated at high laser intensity (1018–1019 W/cm2) with 50‐fs laser pulses and high contrast (108) to investigate ion acceleration in the target‐normal‐sheath‐acceleration regime. Time‐of‐flight technique was employed with SiC semiconductor detectors and ion collectors in order to measure the ion kinetic energy and to control the properties of the generated plasma. It was found that, at the optimized laser focus position with respect to the target, maximum proton acceleration up to about 3 MeV energy and low angular divergence could be generated. The high proton energy is explained as due to the high electrical and thermal conductivity of the reduced graphene oxide structure. Dependence of the maximum proton energy on the target focal position and thickness is presented and discussed.  相似文献   
19.
The fs laser facility in Bordeaux, delivering an intensity of 1018 W/cm2 at normal incidence on thin foils, has been used to induce forward electron and ion acceleration in target-normal-sheath-acceleration (TNSA) regime. Micrometric thin foils with different composition, thickness, and electron density, were prepared to promote the charge particle acceleration in the forward direction. The plasma electron and ion emission monitoring were performed on-line using SiC semiconductor detectors in time-of-flight (TOF) configuration and gaf-chromics films both covered by thin absorber filters. The experiment has permitted to accelerate electrons and protons. A special attention was placed to detect relativistic hot electrons escaping from the plasma and cold electrons returning to the target position. The electron energies of the order of 100 keV and of about 1 keV were detected as representative of hot and cold electrons, respectively. A high cold electron contribution was measured using low-contrast fs laser, while it is less evident using high-contrast fs lasers. The charge particle acceleration depends on the laser parameters, irradiation conditions, and target properties, as will be presented and discussed.  相似文献   
20.
The nonequilibrium plasma generated by nanosecond laser pulse is characterized using a SiC detector connected in time-of-flight configuration to measure the radiations emitted from the plasma. Different metallic targets were irradiated by the pulsed laser at an intensity of 1010 W/cm2 and 200 mJ pulse energy. The SiC allows detecting ultraviolet radiations and soft X-rays, electrons, and ions. The obtained plasma has a temperature of the order of tens to hundreds eV depending on the atomic number of the irradiated target and ion accelerations of the order of 100 eV per charge state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号