According to the regulations of the United States Food and Drug Administration (FDA), organic solvents should be limited in pharmaceutical and food products due to their inherent toxicity. For this reason, this short paper proposes different mechanical treatments to extract lycopene without organic solvents to produce an edible sunflower oil (SFO) enriched with lycopene from fresh pink guavas (Psidium guajava L.) (FPGs). The methodology involves the use of SFO and a combination of mechanical treatments: a waring blender (WB), WB+ high-shear mixing (HSM) and WB+ ultrafine friction grinding (UFFG). The solid:solvent (FPG:SFO) ratios used in all the techniques were 1:5, 1:10 and 1:20. The results from optical microscopy and UV–vis spectroscopy showed a correlation between the concentration of lycopene in SFO, vegetable tissue diameters and FPG:SFO ratio. The highest lycopene concentration, 18.215 ± 1.834 mg/g FPG, was achieved in WB + UFFG with an FPG:SFO ratio of 1:20. The yield of this treatment was 66% in comparison to the conventional extraction method. The maximal lycopene concentration achieved in this work was significantly higher than the values reported by other authors, using high-pressure homogenization for tomato peel and several solvents such as water, SFO, ethyl lactate and acetone. 相似文献
The first stage of the drug discovery process involves the identification of small compounds with biological activity. Iboga alkaloids are monoterpene indole alkaloids (MIAs) containing a fused isoquinuclidine-tetrahydroazepine ring. Both the natural products and the iboga-inspired synthetic analogs have shown a wide variety of biological activities. Herein, we describe the chemoenzymatic preparation of a small library of novel N-indolylethyl-substituted isoquinuclidines as iboga-inspired compounds, using toluene as a starting material and an imine Diels–Alder reaction as the key step in the synthesis. The new iboga series was investigated for its potential to promote the release of glial cell line-derived neurotrophic factor (GDNF) by C6 glioma cells, and to inhibit the growth of infective trypanosomes. GDNF is a neurotrophic factor widely recognized by its crucial role in development, survival, maintenance, and protection of dopaminergic neuronal circuitries affected in several neurological and psychiatric pathologies. Four compounds of the series showed promising activity as GDNF releasers, and a leading structure (compound 11) was identified for further studies. The same four compounds impaired the growth of bloodstream Trypanosoma brucei brucei (EC50 1–8 μM) and two of them (compounds 6 and 14) showed a good selectivity index. 相似文献
Lubricants are materials able to reduce friction and/or wear of any type of moving surfaces facilitating smooth operations, maintaining reliable machine functions, and reducing risks of failures while contributing to energy savings. At present, most worldwide used lubricants are derived from crude oil. However, production, usage and disposal of these lubricants have significant impact on environment and health. Hence, there is a growing pressure to reduce demand of this sort of lubricants, which has fostered development and use of green lubricants, as vegetable oil-based lubricants (biolubricants). Despite the ecological benefits of producing/using biolubricants, availability of the required raw materials and agricultural land to create a reliable chain supply is still far from being established. Recently, biomass from some microalgae species has attracted attention due to their capacity to produce high-value lipids/oils for potential lubricants production. Thus, this multidisciplinary work reviews the main chemical-physical characteristics of lubricants and the main attempts and progress on microalgae biomass production for developing oils with pertinent lubricating properties. In addition, potential microalgae strains and chemical modifications to their oils to produce lubricants for different industrial applications are identified. Finally, a guide for microalgae oil selection based on its chemical composition for specific lubricant applications is provided. 相似文献
In this work we perform an ab initio study of the electric field gradient (EFG) at the nucleus of Fe impurities in crystalline SnO. The Augmented Plane Waves plus Local Orbitals method is used to obtain the electronic structure of the doped system and the atomic relaxations introduced by the impurities in the SnO host in a fully self-consistent way. Most calculations are performed assuming that Fe ions replace the Sn atoms of the structure, in some cases including oxygen vacancies in order to discuss their role in the hyperfine interactions and in determining the local structure around Fe impurities. The case of interstitial Fe sites is also considered. Our predictions are compared with available Müssbauer spectroscopy results and also with theoretical and experimental results obtained for rutile SnO2 and TiO2. 相似文献
A red-emitting fluorescent Riboflavin (RF)/Polyvinylpyrrolidone (PVP)-coated silver nanoparticles system, λem?=?527 nm, Φ?=?0.242, with a diameter of the metallic core of 27.33 nm and a zeta potential of ? 25.05 mV was prepared and investigated regarding its biological activity. We found that PVP has a key role in RF adsorption around the SNPs surface leading to an enhancement of antioxidant properties (~70%), low cytotoxicity (> 90% cell viability, at 50 µL/mL, after 48 h of incubation) as well as to an efficient process of its cellular uptake (~ 60%, after 24 h of incubation) in L929 cells. The results are relevant concerning the involvement of RF and its coenzymes forms in SNPs - based systems, in cellular respiration as well as for future studies as antioxidant marker system on tumoral cells for viewing and monitoring them, by cellular imaging.
Here, we provide mechanistic insight to the photocleavage of a compound in the folate family, namely pteroic acid. A bis-decyl chain derivative of pteroic acid was synthesized, structurally characterized and photochemically investigated. We showed that, like folic acid, pteroic acid and the decylated derivative undergo a photocleavage reaction in the presence of H2O, while no reaction was observed in methanol solution. Furthermore, density functional theory calculations were carried out to predict relative stabilities of hypothetical mono-, bis- and tris-decylated pteroic acid derivatives to help rationalize the regioselectivity of the bis-decyl pteroic acid product. Additionally, the lipophilicity of the bis-decyl pteroic acid appears to confer a hydrophobic property enabling an interaction with biomembranes. 相似文献
A comparative study was carried out to evaluate protease production in solid-state fermentation (SSF) and submerged fermentation
(SmF) by nine different thermophilic fungi – Thermoascus aurantiacus Miehe, Thermomyces lanuginosus, T. lanuginosus TO.03, Aspergillus flavus 1.2, Aspergillus sp. 13.33, Aspergillus sp. 13.34, Aspergillus sp. 13.35, Rhizomucor pusillus 13.36 and Rhizomucor sp. 13.37 – using substrates containing proteins to induce enzyme secretion. Soybean extract (soybean milk), soybean flour,
milk powder, rice, and wheat bran were tested. The most satisfactory results were obtained when using wheat bran in SSF. The
fungi that stood out in SSF were T. lanuginosus, T. lanuginosus TO.03, Aspergillus sp. 13.34, Aspergillus sp. 13.35, and Rhizomucor sp. 13.37, and those in SmF were T. aurantiacus, T. lanuginosus TO.03, and 13.37. In both fermentation systems, A. flavus 1.2 and R. pusillus 13.36 presented the lowest levels of proteolytic activity. 相似文献
Two yellow bis-azo dyes containing anthracene and two azodiphenylether groups (BPA and BTA) were prepared, and an extensive investigation of their physical, thermal and biological properties was carried out. The chemical structure was confirmed by the FTIR spectra, while from the UV–Vis spectra, the quantum efficiency of the laser fluorescence at the 476.5 nm was determined to be 0.33 (BPA) and 0.50 (BTA). The possible transitions between the energy levels of the electrons of the chemical elements were established, identifying the energies and the electronic configurations of the levels of transition. Both crystals are anisotropic, the optical phenomenon of double refraction of polarized light (birefringence) taking place. Images of maximum illumination and extinction were recorded when the crystals of the bis-azo compounds rotated by 90° each, which confirms their birefringence. A morphologic study of the thin films deposited onto glass surfaces was performed, proving the good adhesion of both dyes. By thermal analysis and calorimetry, the melting temperatures were determined (~224–225 °C for both of them), as well as their decomposition pathways and thermal effects (enthalpy variations during undergoing processes); thus, good thermal stability was exhibited. The interaction of the two compounds with collagen in the suede was studied, as well as their antioxidant activity, advocating for good chemical stability and potential to be safely used as coloring agents in the food industry. 相似文献
The conversion of cellular prion protein (PrP(C)) into the pathological conformer PrP(Sc) requires contact between both isoforms and probably also requires a cellular factor, such as a nucleic acid or a glycosaminoglycan (GAG). Little is known about the structural features implicit in the GAG-PrP interaction. In the present work, light scattering, fluorescence, circular dichroism, and nuclear magnetic resonance (NMR) spectroscopy were used to describe the chemical and physical properties of the murine recombinant PrP 23-231 interaction with low molecular weight heparin (LMWHep) at pH 7.4 and 5.5. LMWHep interacts with rPrP 23-231, thereby inducing transient aggregation. The interaction between murine rPrP and heparin at pH 5.5 had a stoichiometry of 2:1 (LMWHep:rPrP 23-231), in contrast to a 1:1 binding ratio at pH 7.4. At binding equilibrium, NMR spectra showed that rPrP complexed with LMWHep had the same general fold as that of the free protein, even though the binding can be indicated by significant changes in few residues of the C-terminal domain, especially at pH 5.5. Notably, the soluble LMWHep:rPrP complex prevented RNA-induced aggregation. We also investigated the interaction between LMWHep and the deletion mutants rPrP Δ51-90 and Δ32-121. Heparin did not bind these constructs at pH 7.4 but was able to interact at pH 5.5, indicating that this glycosaminoglycan binds the octapeptide repeat region at pH 7.4 but can also bind other regions of the protein at pH 5.5. The interaction at pH 5.5 was dependent on histidine residues of the murine rPrP 23-231. Depending on the cellular milieu, the PrP may expose different regions that can bind GAG. These results shed light on the role of GAGs in PrP conversion. The transient aggregation of PrP may explain why some GAGs have been reported to induce the conversion into the misfolded, scrapie conformation, whereas others are thought to protect against conversion. The acquired resistance of the complex against RNA-induced aggregation explains some of the unique properties of the PrP interaction with GAGs. 相似文献