Rhenium does the job! A readily available rhenium complex efficiently catalyzed the direct Meyer–Schuster‐like rearrangement of different alkyl‐ and aryl‐substituted propargylic secondary and tertiary alcohols to the corresponding α,β‐unsaturated compounds, which were produced with virtually complete E stereoselectivity. The reaction proceeded under neutral conditions and no racemization of potentially enolizable stereocenters was observed.
A fast and sensitive high-performance liquid chromatographic method has been developed for the determination in human plasma of MHPG (3-methoxy-4-hydroxyphenylethylenglycol) and VMA (vanillyl mandelic acid), the main metabolites of epinephrine and norepinephrine. Analyses were carried out at 325 nm while exciting at 285 nm on a reversed-phase column (Atlantis C18, 150 mm × 4.6 mm I.D., 5 μm) using a mobile phase composed of 2% methanol and 98% aqueous citrate buffer at pH 3.0. A careful solid-phase extraction procedure, based on mixed-mode reversed-phase - strong anion exchange Oasis cartridges (MAX, 30 mg, 1 mL), was developed for the pre-treatment of plasma samples. Extraction yields were satisfactory, always higher than 90%. Calibration curves were linear over the 0.2-40.0 ng mL−1 concentration range for MHPG and over the 0.5-40.0 ng mL−1 concentration range for VMA. The method was successfully applied to plasma samples of former drug users undergoing detoxification therapy and subjects “at risk” of developing drug addiction. 相似文献
Atomic force microscopy is shown to be an excellent lithographic technique to directly deposit nanoparticles on graphene by capillary transport without any previous functionalization of neither the nanoparticles nor the graphene surface while preserving its integrity and conductivity properties. Moreover this technique allows for (sub)micrometric control on the positioning thanks to a new three-step protocol that has been designed with this aim. With this methodology the exact target coordinates are registered by scanning the tip over the predetermined area previous to its coating with the ink and deposition. As a proof-of-concept, this strategy has successfully allowed the controlled deposition of few nanoparticles on 1 μm(2) preselected sites of a graphene surface with high accuracy. 相似文献
The trifluorido complex mer-[CrF(3)(py)(3)] (py = pyridine) reacts with 1 equiv. of [Ln(hfac)(3)(H(2)O)(2)] and depending on the solvent forms the tetranuclear clusters [Cr(2)Ln(2)(μ-F)(4)(μ-OH)(2)(py)(4)(hfac)(6)], 1Ln, and [Cr(2)Ln(2)(μ-F)(4)F(2)(py)(6)(hfac)(6)], 2Ln, in acetonitrile and 1,2-dichloroethane, respectively (Ln = Y, Gd, Tb, Dy, Ho, and Er; hfacH = 1,1,1,5,5,5-hexafluoroacetylacetone). Reaction with [Dy(hfac)(3)(H(2)O)(2)] in dichloromethane produces the dinuclear cluster [CrDy(μ-F)F(OH(2))(py)(3)(hfac)(4)], 3Dy. All the clusters feature fluoride bridges between the chromium(iii) and lanthanide(iii) centres. Fits of susceptibility data for 1Gd and 2Gd reveal the fluoride-mediated chromium(iii)-lanthanide(iii) exchange interactions to be 0.43(5) cm(-1) and 0.57(7) cm(-1), respectively (in the convention). Heat capacity measurements on 2Gd reveal a moderate magneto-caloric effect (MCE) reaching -ΔS(m)(T) = 11.4 J kg(-1) K(-1) for ΔB(0) = 9 T → 0 T at T = 4.1 K. Out-of-phase alternating-current susceptibility (χ') signals are observed for 1Dy, 2Dy and 2Tb, demonstrating slow relaxation of the magnetization. 相似文献
A series of organically modified iron(III) terephthalate MIL-88B and iron(III) 4,4'-biphenyl dicarboxylate MIL-88D flexible solids have been synthesized and characterized through a combination of X-ray diffraction, IR spectroscopy, and thermal analysis (MIL stands for Material from Institut Lavoisier). The swelling amplitude of the highly flexible MOFs tuned by introducing functional groups onto the phenyl rings shows a clear dependence on the steric hindrance and on the number of groups per aromatic ring. For instance, while the introduction of four methyl groups per spacer in dried MIL-88B results in a large permanent porosity, introducing two or four methyl groups in MIL-88D allows an easier pore opening in the presence of liquids without drastically decreasing the swelling magnitude. The influence of the degree of saturation of the metal center and the nature of the solvent on the swelling is also discussed. Finally, a computationally assisted structure determination has led to a proposal of plausible structures for the closed (dried) and open forms of modified MIL-88B and MIL-88D and to evaluation of their framework energies subject to the nature of the functional groups. 相似文献
Two iron(III)-containing amphiphiles 1 and 2 have been synthesized with the [NN'O] ligands HL(tBu-ODA) (2-((octadecyl(pyridin-2-ylmethyl)amino)methyl)-4,6-di-tert-butylphenol) and HL(I-ODA) (2-((octadecyl(pyridin-2-ylmethyl)amino)methyl)-4,6-diiodophenol), respectively. Compound 1 is monometallic, whereas EXAFS data suggest that 2 is a mixture of mono- and bimetallic species. The archetypical [Fe(III)(L(NN'O))(2)](+) complexes 3-9 have been isolated and characterized in order to understand the geometric, electronic, and redox properties of the amphiphiles. Preference for a monometallic or bimetallic nuclearity is dependent on (i) the nature of the solvent used for synthesis and (ii) the type of the substituent in the phenol moiety. In methanol, the tert-butyl-, methoxy-, and chloro-substituted 3, 4, and 5 are monometallic species, whereas the bromo- and iodo-substituted 6 and 7 form bimetallic complexes taking advantage of stabilizing methoxo bridges generated by solvent deprotonation. In dichloromethane, the bromo- and iodo-substituted 8 and 9 are monometallic species; however, these species favor meridional coordination in opposition to the facial coordination observed for the tert-butyl- and methoxy-substituted compounds. Molecular structures for species 5, 7, 8, and 9 have been solved by X-ray diffraction. Furthermore, the electronic spectrum of the amphiphile 1 was expected to be similar to those of facial/cis archetypes with similar substituents, but close resemblance was observed with the profile for those meridional/cis species, suggesting a similar coordination mode. This trend is discussed based on DFT calculations, where preference for the meridional/cis coordination mode appears related to the presence of tertiary amine nitrogen on the ligand, as when a long alkyl chain is attached to the [NN'O] headgroup. 相似文献
Colloidal branched nanocrystals have been attracting increasing attention due to evidence of an interesting relationship between their complex shape and charge carrier dynamics. Herein, continuous wave photoinduced absorption (CW PIA) measurements of CdSe/CdS octapod-shaped nanocrystals are reported. CW PIA spectra show strong bleaching due to the one-dimensional (1D) CdS pod states (480 nm) and the zero-dimensional (0D) CdSe core states (690 nm). The agreement with previously reported ultrafast pump-probe experiments indicates that this strong bleaching signal may be assigned to state filling. Additional bleaching features at 520 and 560 nm are characterized by a longer lifetime and are thus ascribed to defect states, localized at the pod-core interface of the octapod, showing that some of the initially photogenerated carriers get quickly trapped into these long-lived defect states. However, we remark that a relevant part of electrons remain untrapped: this opens up the opportunity to exploit octapod shaped nanocrystals in photovoltaics applications, as electron acceptor materials, considering that several efficient hole extracting materials are already available for the realization of a composite bulk heterojunction. 相似文献
The various internal rotations and interconformational jumps of the Na-salt form of ibuprofen in the solid state were characterized in detail by means of the simultaneous analysis of a variety of low- and high-resolution NMR experiments aimed at measuring several (13)C and (1)H spectral and relaxation properties at different temperatures and frequencies. The results were first qualitatively analyzed to identify the motions of the different molecular fragments and to assign them to specific frequency regimes (slow, <10(3) Hz; intermediate, 10(3)-10(6) Hz; and fast, >10(6) Hz). Subsequently, a simultaneous fit of the experimental data sets most sensitive to each frequency range was performed by using suitable motional models, thus obtaining, for each motion, correlation times and activation energies. The motions so characterized were: the rotations of the three methyl groups and of the isobutyl group, occurring in the fast regime, and the π-flip of the phenyl ring, belonging to the intermediate motional regime. The results obtained for the Na-salt form were compared with those of the acidic form of ibuprofen, previously obtained from a similar solid-state NMR approach: despite the very similar chemical structure of the two compounds, their dynamic properties in the solid state are noticeably different. 相似文献
We report a combined theoretical and experimental study on the single-molecule interaction of fullerenes with phospholipid membranes. We studied pristine C(60) (1) and two N-substituted fulleropyrrolidines (2 and 3), one of which (3) bore a paramagnetic nitroxide group. Theoretical predictions of fullerene distribution and permeability across lipid bilayers were combined with electron paramagnetic resonance (EPR) experiments in aligned DMPC/DHPC bicelles containing the paramagnetic fulleropyrrolidine 3 or either one of the diamagnetic fullerenes together with spin-labeled lipids. We found that, at low concentrations, fullerenes are present in the bilayer as single molecules. Their preferred location in the membrane is only slightly influenced by the derivatization: all derivatives were confined just below the hydrophilic/hydrophobic interface, because of the key role played by dispersion interactions between the highly polarizable fullerene cage and the hydrocarbon chains, which are especially tight within this region. However, the deviation from spherical shape is sufficient to induce a preferential orientation of 2 and 3 in the membrane. We predict that monomeric fullerenes spontaneously penetrate the bilayer, in agreement with the results of molecular dynamics simulations, but we point out the limits of the currently used permeability model when applied to hydrophobic solutes. 相似文献