首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   0篇
化学   30篇
晶体学   1篇
力学   2篇
数学   3篇
物理学   23篇
  2022年   2篇
  2014年   2篇
  2012年   2篇
  2011年   1篇
  2008年   2篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有59条查询结果,搜索用时 481 毫秒
11.
12.
The inclusion of a generation-4 polyamidoamine (G4-PAMAM) dendrimer in a silica sol-gel yielded a solid electrolyte that was used to encapsulate Prussian Blue (PB), iron(III) hexacyanoferrate(II), and cobalt hexacyanoferrate. The PB was synthesized in the doped silica by sequential immersion of a monolith in 0.1 M K4Fe(CN)6, water, and 0.1 M FeCl3. Inclusion of G4-PAMAM resulted in a nanoporous anion-exchange material with a capacity of 10.1 mmol g–1, which is about four times greater than the capacity of silica alone. Relative to its G0 counterpart, the G4-PAMAM doped silica increased the rate of formation of PB by a factor of ca. 20. The solid state voltammetry of PB in the doped silica had the usual features for this compound. At 0.1 V vs. a Ag quasi-reference electrode, a reversible reduction was seen; the relationship between current and scan rate was that for a surface-confined redox couple. The quasi-reversible oxidation of PB was observed at 0.85 V. Inclusion of G4-PAMAM increased the lifetime of silica as a solid electrolyte from a few days to at least three months. Raman microprobe mapping analysis demonstrated that PB was homogeneously distributed across the entire width (ca. 1 mm) of the G4-doped monolith with 20-h immersions. Electronic Publication  相似文献   
13.
We have theoretically analyzed Watson–Crick AT and GC base pairs in which purine C8 and/or pyrimidine C6 positions carry a substituent X = H, F, Cl or Br, using the generalized gradient approximation (GGA) of density functional theory at BP86/TZ2P. The purpose is to study the effects on structure and hydrogen bond strength if X = H is substituted by a halogen atom. Furthermore, we wish to explore the relative importance of electrostatic attraction versus orbital interaction in the above multiply hydrogen-bonded systems, using a quantitative bond energy decomposition scheme. We find that replacing X = H by a halogen atom has relatively small yet characteristic effects on hydrogen bond lengths, strengths and bonding mechanism. In general, it reduces the hydrogen-bond-accepting- and increases the hydrogen-bond-donating capabilities of a DNA base. The orbital interaction component in these hydrogen bonds is found for all substituents (X = H, F, Cl, and Br) to contribute about 41% of the attractive interactions and is thus of the same order of magnitude as the electrostatic component, which provides the remaining 59% of the attraction.  相似文献   
14.
Solid-state NMR spectroscopy is being used to determine the structures of membrane proteins involved in the regulation of apoptosis and ion transport. The Bcl-2 family includes pro- and anti-apoptotic proteins that play a major regulatory role in mitochondrion-dependent apoptosis or programmed cell death. The NMR data obtained for (15)N-labeled anti-apoptotic Bcl-xL in lipid bilayers are consistent with membrane association through insertion of the two central hydrophobic alpha-helices that are also required for channel formation and cytoprotective activity. The FXYD family proteins regulate ion flux across membranes, through interaction with the Na(+), K(+)-ATPase, in tissues that perform fluid and solute transport or that are electrically excitable. We have expressed and purified three FXYD family members, Mat8 (mammary tumor protein), CHIF (channel-inducing factor) and PLM (phospholemman), for structure determination by NMR in lipids. The solid-state NMR spectra of Bcl-2 and FXYD proteins, in uniaxially oriented lipid bilayers, give the first view of their membrane-associated architectures.  相似文献   
15.
The anisotropy of nuclear spin interactions results in a unique mapping of structure to the resonance frequencies and split tings observed in NMR spectra, however, the determination of molecular structure from experimentally measured spectral parameters is complicated by angular ambiguities resulting from the symmetry properties of dipole-dipole and chemical shift interactions. This issue can be addressed through the periodicity inherent in secondary structure elements, which can be used as an index of topology. Distinctive wheel-like patterns are observed in two-dimensional 1H-15N heteronuclear dipolar/15N chemical shift PISEMA (polarization inversion spin-exchange at the magic angle) spectra of helical membrane proteins in highly aligned lipid bilayer samples. One-dimensional dipolar waves are an extension of two-dimensional PISA (polarity index slant angle) wheels to map protein structure in NMR spectra of both highly and weakly aligned samples. Dipolar waves describe the periodic wavelike variations of the magnitudes of the static heteronuclear dipolar couplings as a function of residue number in the absence of chemical shift effects. Weakly aligned samples of proteins display these same effects, primarily as residual dipolar couplings (RDCs), in solution NMR spectra. The corresponding properties of the RDCs in solution NMR spectra of weakly aligned helices represent a convergence of solid-state and solution NMR approaches to structure determination.  相似文献   
16.
Uniformly (15)N-labeled samples of membrane proteins with helices aligned parallel to the membrane surface give two-dimensional PISEMA spectra that are highly overlapped due to limited dispersions of (1)H-(15)N dipolar coupling and (15)N chemical shift frequencies. However, resolution is greatly improved in three-dimensional (1)H chemical shift/(1)H-(15)N dipolar coupling/(15)N chemical shift correlation spectra. The 23-residue antibiotic peptide magainin and a 54-residue polypeptide corresponding to the cytoplasmic domain of the HIV-1 accessory protein Vpu are used as examples. Both polypeptides consist almost entirely of alpha-helices, with their axes aligned parallel to the membrane surface. The measurement of three orientationally dependent frequencies for Val17 of magainin enabled the three-dimensional orientation of this helical peptide to be determined in the lipid bilayer.  相似文献   
17.
A unique preparation method of obtaining stable composite film (with ultra-low platinum content) highly active towards oxygen reduction and hydrogen oxidation is presented here. The matrix for platinum centers consists of high-surface-area zeolite-type acidic salt of cesium phosphododecatungstate (Cs2.5H0.5PW12O40) admixed with carbon (Vulcan XC-72) carriers. Platinum nanoparticles were deposited on the working electrode modified with matrix via corrosion of platinum counter electrode during cyclic voltammetry experiment conducted in acid electrolyte containing chloride ions. The results obtained from rotating disk voltammetry revealed that the composite film containing Pt nanoparticles at very low loadings (on the level of 2–5 μg cm?2) demonstrated remarkable electrocatalytic activity towards both oxygen reduction and hydrogen oxidation, particularly, when compared to the performance of the Cs2.5H0.5PW12O40-free system (i.e., containing only Vulcan support) prepared and examined under analogous conditions. The phenomenon should be primarily ascribed to the mesoporous nature of the matrix enabling immobilization and stabilization of small catalytic nanoparticles (1–2 nm diameters) inside the pores as well as to high surface acidity of the polyoxometalate-based salt providing proton-rich environment at the electrocatalytic interface.  相似文献   
18.
The use of sol-gel processes in the preparation of cathode materials is of growing interest because of their ease and flexibility. The electrochemical properties, e.g. the rate of lithium intercalation, appear to depend on the morphology of the thin-film vanadium oxide xerogels that can be changed by modifying the preparation. In this context, in order to extend the study to bulk materials, xerogel powder samples with surface areas in the range 2–5 m2/g have been prepared from pure vanadium pentoxide hydrogels, or in the form of composites, from carbon powder added to hydrogels. The electrochemical properties have been correlated with the morphological and structural changes induced by the presence of carbon using X-ray and XAS spectroscopy.  相似文献   
19.
Corticosteroid hormone-induced factor (CHIF) is a major regulatory subunit of the Na,K-ATPase, and a member of an evolutionarily conserved family of membrane proteins that regulate the function of the enzyme complex in a tissue-specific and physiological-state-specific manner. Here we present the structure of CHIF oriented in the membrane, determined by solid-state NMR orientation-dependent restraints. Because CHIF adopts a similar structure in lipid micelles and bilayers, it is possible to assign the solid-state NMR spectrum measured for (15)N-labeled CHIF in oriented bilayers from the structure determined in micelles, to obtain the global orientation of the protein in the membrane.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号