首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2624篇
  免费   284篇
  国内免费   156篇
化学   1964篇
晶体学   25篇
力学   117篇
综合类   1篇
数学   235篇
物理学   722篇
  2024年   14篇
  2023年   98篇
  2022年   194篇
  2021年   157篇
  2020年   164篇
  2019年   173篇
  2018年   161篇
  2017年   115篇
  2016年   177篇
  2015年   176篇
  2014年   190篇
  2013年   238篇
  2012年   263篇
  2011年   248篇
  2010年   162篇
  2009年   122篇
  2008年   130篇
  2007年   107篇
  2006年   60篇
  2005年   33篇
  2004年   18篇
  2003年   10篇
  2002年   16篇
  2001年   5篇
  2000年   10篇
  1999年   1篇
  1998年   7篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1990年   6篇
  1986年   1篇
  1985年   2篇
排序方式: 共有3064条查询结果,搜索用时 15 毫秒
51.
The high sequence specificity and precise base complementary pairing principle of DNA provides a rich orthogonal molecular library for molecular programming, making it one of the most promising materials for developing bio-compatible intelligence. In recent years, DNA has been extensively studied and applied in the field of biological computing. Among them, the toehold-mediated strand displacement reaction (SDR) with properties including enzyme free, flexible design and precise control, have been extensively used to construct biological computing circuits. This review provides a systemic overview of SDR design principles and the applications. Strategies for designing DNA-only, enzymes-assisted, other molecules-involved and external stimuli-controlled SDRs are described. The recently realized computing functions and the application of DNA computing in other fields are introduced. Finally, the advantages and challenges of SDR-based computing are discussed.  相似文献   
52.
Owing to the unique structural, electronic, and physico-chemical properties, molybdenum clusters are expected to play an important role in future nanotechnologies. However, their ground states are still under debate. In this study, the crystal structure analysis by particle swarm optimization (CALYPSO) approach is used for the global minimum search, which is followed by first-principles calculations, to detect an obvious dimerization tendency in Mo\begin{document}$ _n $\end{document} (\begin{document}$ n $\end{document} = 2\begin{document}$ - $\end{document}18) clusters when the 4s and 4p semicore states are not regarded as the valence states. Further, the clusters with even number of atoms are usually magic clusters with high stability. However, after including the 4s and 4p electrons as valence electrons, the dimerization tendency exhibits a drastic reduction because the average hybridization indices \begin{document}$ H_{ \rm{sp}} $\end{document}, \begin{document}$ H_{ \rm{sd}} $\end{document}, and \begin{document}$ H_{ \rm{pd}} $\end{document} are reduced significantly. Overall, this work reports new ground states of Mo\begin{document}$ _n $\end{document} (\begin{document}$ n $\end{document} = 11, 14, 15) clusters and proves that semicore states are essential for Mo\begin{document}$ _n $\end{document}  相似文献   
53.
Cheng  Fei  Xu  Yunfei  Lv  Zhenfei  Huang  Zhaohui  Fang  Minghao  Liu  Yan’gai  Wu  Xiaowen  Min  Xin 《Journal of Thermal Analysis and Calorimetry》2021,146(5):2089-2099
Journal of Thermal Analysis and Calorimetry - In this study, we focus on important global issue containing both environmental pollution control and energy saving. High density polyethylene (HDPE)...  相似文献   
54.
The isoselective ring-opening polymerization of racemic lactide was achieved by combining N-heterocyclic olefin(NHO) with mono(thio)ureas or bis(thio)ureas as catalytic systems. The polymerization process shows high stereoselectivity, controllability and reactivity,delivering multi-block isotactic polylactides with high chain-end fidelity and narrow molecular weight distributions. The enhancement of catalytic performance was observed in the following order: bisthiourea(DTU) monothiourea(TU) bisurea(DU) urea(U). The highest Pm(probability of forming a meso dyad) = 0.91 was observed at-70 °C when using NHO/U1 catalytic system and the high stereoselectivity was attributed to chain-end control mechanism.  相似文献   
55.
Lv  Pingli  Han  Zhe  Chu  Yaqi  Ji  Hairui 《Cellulose (London, England)》2021,28(14):9051-9067
Cellulose - In this study, a biomass pretreatment strategy with a recyclable cosolvent (toluene sulfonic acid/ethanol) was developed. The low boiling point solvent (78.15 °C),...  相似文献   
56.
57.
Phase‐change memory (PCM) is regarded as one of the most promising candidates for the next‐generation nonvolatile memory. Its storage medium, phase‐change material, has attracted continuous exploration. Along the traditional GeTe–Sb2Te3 tie line, the binary compound Sb2Te3 is a high‐speed phase‐change material matrix. However, the low crystallization temperature prevents its practical application in PCM. Here, Cr is doped into Sb2Te3, called Cr–Sb2Te3 (CST), to improve the thermal stability. We find that, with increase of the Cr concentration, grains are obviously refined. However, all the CST films exhibit a single hexagonal phase as Sb2Te3 without phase separation. Also, the Cr helps to inhibit oxidation of Sb atoms. For the selected film CST_10.5, the resistance ratio between amorphous and crystalline states is more than two orders of magnitude; the temperature for 10‐year data retention is 120.8 °C, which indicates better thermal stability than GST and pure Sb2Te3. PCM cells based on CST_10.5 present small threshold current/voltage (4 μA/0.67 V). In addition, the cell can be operated by a low SET/RESET voltage pulse (1.1 V/2.4 V) with 50 ns width. Thus, Cr–Sb2Te3 with suitable composition is a promising novel phase‐change material used for PCM with high speed and good thermal stability performances. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
58.
To improve the electrochemical performance of Li2MnSiO4 with low electric conductivity, the Li2MnSiO4/C composite are synthesized by a vacuum solid-state reaction of a mixture of SiO2, LiCH3COO, Mn(CH3COO)2 and designed mass of C6H12O6 · H2O as carbon sources. The crystalline structure and morphology of products are analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and laser scattering technology (LS) respectively. The tested results show that carbon doping decrease the crystallite sizes of products, but keep the aggregation of the particles and made the impurity increased instead. The results of constant current charge-discharge prove that the mixed carbon improve Li+ transmission performance and decrease inner polatization resistance of Li2MnSiO4 materials, but can not prevent the collapse of Li2MnSiO4 crystal structure. While the galvanostatic intermittent titration technique (GITT) results demonstrate that the primary reason for the improved electrochemical performance can be attributed to increased Li-ion diffusion coefficient $(D_{Li^ + } )$ as a result from carbon doping.  相似文献   
59.
A series of experiments were performed to investigate the effect of TiMn1.5 alloying on the structure, hydrogen storage properties and electrochemical properties of LaNi3.8Co1.1Mn0.1 hydrogen storage alloys at 303 K. For simple, A, B, and C are used to represent alloys (x = 0 wt %, x = 4 wt % and x = 8 wt %) respectively. The results of XRD and SEM show that LaNi3.8Co1.1Mn0.1?xTiMn1.5 hydrogen storage alloys have LaNi5 phase and (NiCo)3Ti phase. Based on the results of PCT curves, the hydrogen storage capacities of LaNi3.8Co1.1Mn0.1?xTiMn1.5 hydrogen storage alloys are about 1.28 wt % (A), 1.16 wt % (B) and 1.01 wt % (C) at 303 K. And the released pressure platform and the pressure hysteresis decrease with the increase of TiMn1.5 content. Meanwhile the activation curves show that LaNi3.8Co1.1Mn0.1?xTiMn1.5 hydrogen storage alloy electrodes can be activated in three times and the maximum discharge capacity is 343.74 mA h/g at 303 K. In addition, with the increase of TiMn1.5 content, the cyclic stability of the hydrogen storage alloy electrodes decreases obviously and the capacity retention decreases from 76.70% to 70.00% when TiMn1.5 content increases from A to C. It also can be seen that LaNi3.8Co1.1Mn0.1?xTiMn1.5 hydrogen storage alloy electrode C and B have the best self-discharge ability and the best high-rate discharge ability from self-discharge curves and high-rate discharge curves.  相似文献   
60.
The effect of Cu content on structure, hydrogen storage, and electrochemical properties of LaNi4.1-x Co0.6Mn0.3Cu x alloys has been investigated. For sample, A, B, C, and D are used to represent alloys (x?=?0, 0.15, 0.3, and 0.45), respectively. The results indicate that the four alloys are all single-phase alloy with LaNi5 phase of CaCu5 hexagonal structure, the hydrogen storage capacities of the alloy are about 1.49 wt% (A), 1.48 wt% (B), 1.43 wt% (C), and 1.25 wt% (D) at 303 K. With the increase of Cu content (x) from A to D, hydrogen desorption plateau pressure and pressure hysteresis decrease. Alloy electrode A shows better activation property and higher capacity (334.44 mAh/g). The addition of Cu improves the cyclic stability of the alloy electrodes when x?=?0?~?0.45. However, their self-discharge properties and high-rate dischargeability (HRD) decrease with the increase of x. Further, electrochemical kinetics and electrochemical impedance spectroscopy (EIS) analysis show that the reaction of alloy electrode is controlled by charge transfer step, and the adding of Cu benefits the electrode properties in alkaline solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号