首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   899篇
  免费   21篇
  国内免费   1篇
化学   483篇
晶体学   5篇
力学   21篇
数学   83篇
物理学   329篇
  2021年   7篇
  2020年   16篇
  2019年   14篇
  2018年   5篇
  2017年   5篇
  2016年   17篇
  2015年   15篇
  2014年   14篇
  2013年   32篇
  2012年   38篇
  2011年   38篇
  2010年   22篇
  2009年   23篇
  2008年   32篇
  2007年   31篇
  2006年   34篇
  2005年   21篇
  2004年   32篇
  2003年   33篇
  2002年   26篇
  2001年   29篇
  2000年   32篇
  1999年   17篇
  1998年   16篇
  1997年   4篇
  1996年   28篇
  1995年   15篇
  1994年   13篇
  1993年   19篇
  1992年   24篇
  1991年   27篇
  1990年   15篇
  1989年   10篇
  1988年   13篇
  1987年   11篇
  1986年   14篇
  1985年   14篇
  1984年   4篇
  1982年   5篇
  1981年   7篇
  1980年   7篇
  1979年   7篇
  1978年   14篇
  1977年   9篇
  1976年   5篇
  1975年   11篇
  1974年   13篇
  1973年   11篇
  1971年   5篇
  1968年   4篇
排序方式: 共有921条查询结果,搜索用时 0 毫秒
41.
Single‐walled carbon nanotubes (SWCNTs) are a 1D nanomaterial that shows fluorescence in the near‐infrared (NIR, >800 nm). In the past, covalent chemistry was less explored to functionalize SWCNTs as it impairs NIR emission. However, certain sp3 defects (quantum defects) in the carbon lattice have emerged that preserve NIR fluorescence and even introduce a new, red‐shifted emission peak. Here, we report on quantum defects, introduced using light‐driven diazonium chemistry, that serve as anchor points for peptides and proteins. We show that maleimide anchors allow conjugation of cysteine‐containing proteins such as a GFP‐binding nanobody. In addition, an Fmoc‐protected phenylalanine defect serves as a starting point for conjugation of visible fluorophores to create multicolor SWCNTs and in situ peptide synthesis directly on the nanotube. Therefore, these quantum defects are a versatile platform to tailor both the nanotube's photophysical properties as well as their surface chemistry.  相似文献   
42.
43.
44.
45.
The European Physical Journal A - We investigated multi-nucleon transfer reactions in collisions of 58Ni + 207Pb and 64Ni + 207Pb at Coulomb barrier energies. The new aspect is that we used a...  相似文献   
46.
47.
We discuss repulsive Casimir forces between dielectric materials with nontrivial magnetic susceptibility. It is shown that considerations based on the naive pairwise summation of van der Waals and Casimir-Polder forces may not only give an incorrect estimate of the magnitude of the total Casimir force but even the wrong sign of the force when materials with high dielectric and magnetic responses are involved. Indeed repulsive Casimir forces may be found in a large range of parameters, and we suggest that the effect may be realized in known materials. The phenomenon of repulsive Casimir forces may be of importance both for experimental study and for nanomachinery applications.  相似文献   
48.
Neutron-proton final state interactions (FSI) were observed in the deuteron breakup reaction 2H(p, 2p)n-via a kinematically complete experiment at incident proton energies of 585 and 800 MeV. Kinematic conditions were chosen which allowed the final state proton and neutron to have small relative energies; data were taken at four proton c.m. scattering angles at 800 MeV, ranging from 71° to 119° and at 94° and 106° at 585 MeV. The data are analyzed in terms of the Goldberger-Watson formalism for final state interactions, and the individual contributions of the 1S0 and 3S1 np states are determined. The 3S11S0 ratio is large, as expected from some reaction models. The ratio of 3S1 (almost elastic) to pd elastic cross sections is in good agreement with FSI analysis.  相似文献   
49.
50.
Wave-front reconstruction for ultrabroadband laser pulses is verified by use of a Hartmann-Shack sensor. We estimate the accuracy of numerical wave-front propagation by comparing numerical with experimental results and verify that wave fronts of ultrabroadband laser pulses from a hollow fiber can be propagated correctly by a single polychromatic wave-front measurement to a place where detection is not practicable, e.g., inside a vacuum chamber or laser focus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号