首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   12篇
  国内免费   1篇
化学   199篇
晶体学   1篇
力学   2篇
数学   50篇
物理学   88篇
  2022年   3篇
  2020年   6篇
  2018年   3篇
  2016年   9篇
  2015年   4篇
  2014年   14篇
  2013年   26篇
  2012年   24篇
  2011年   18篇
  2010年   13篇
  2009年   12篇
  2008年   16篇
  2007年   15篇
  2006年   10篇
  2005年   19篇
  2004年   17篇
  2003年   16篇
  2002年   11篇
  2001年   10篇
  2000年   11篇
  1999年   2篇
  1998年   3篇
  1996年   8篇
  1995年   5篇
  1994年   7篇
  1993年   3篇
  1992年   8篇
  1991年   4篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
  1939年   1篇
  1938年   1篇
  1935年   2篇
  1934年   3篇
排序方式: 共有340条查询结果,搜索用时 0 毫秒
91.
92.
93.
Abstract

The use of epoxides obtained by dimethyldioxirane epoxidation of 2,3-anhydro-1,3-dideoxy-4,5:7,8-di-O-isopropylidene-D-manno-oct-1-enitol as glycosyl donors is described. This method offers a simple and stereoselective access to precursors of Kdo glycosides. The stereochemical outcome of the reaction is rationalized by means of semiempirical calculations of the transition states leading to glycosides formation.  相似文献   
94.
Graphene, a class of two‐dimensional carbon nanomaterial, has attracted extensive interest in recent years, with a significant amount of research focusing on graphene oxides (GOs). They have been primed as potential candidates for biomedical applications such as cell labeling and drug delivery, thus the toxicity and behavior of graphene oxides in biological systems are fundamental issues that need urgent attention. The production of GO is generally achieved through a top‐down route, which includes the usage of concentrated H2SO4 along with: 1) concentrated nitric acid and KClO3 oxidant (Hoffmann); 2) fuming nitric acid and KClO3 oxidant (Staudenmaier); 3) concentrated phosphoric acid with KMnO4 (Tour); or 4) sodium nitrate for in‐situ production of nitric acid in the presence of KMnO4 (Hummers). It has been widely assumed that the properties of these four GOs produced by using the above different methods are roughly similar, so the methods have been used interchangeably. However, several studies have reported that the toxicity of graphene‐related nanomaterials in biological systems may be influenced by their physiochemical properties, such as surface functional groups and structural defects. In addition, considering how GOs are increasingly used in the field of biomedicine, we are interested to see how the oxygen content/functional groups of GOs can impact their toxicological profiles. Since in‐vitro testing is a common first step in assessing the health risks related with engineered nanomaterials, the cytotoxicity of the GOs prepared by the four different oxidative treatments was investigated by measuring the mitochondrial activity in adherent lung epithelial cells (A549) by using commercially available viability assays. The dose–response data was generated by using two assays, the methylthiazolyldiphenyl‐tetrazolium bromide (MTT) assay and the water‐soluble tetrazolium salt (WST‐8). From the viability data, it is evident that there is a strong dose‐dependent cytotoxic response resulting from the four GO nanomaterials tested after a 24 h exposure, and it is suggested that there is a correlation between the amounts of oxygen content/functional groups of GOs with their toxicological behavior towards the A549 cells.  相似文献   
95.
Graphene and its graphene‐related counterparts have been considered the future of advanced nanomaterials owing to their exemplary properties. An increase in their potential applications in the biomedical field has led to serious concerns regarding their safety and impact on health. To understand the toxicity profile for a particular type of graphene utilized in a given application, it is important to recognize the differences between the graphene‐related components and correlate their cellular toxicity effects to the attributed physiochemical properties. In this study, the cytoxicity effects of highly hydrogenated graphene (HHG) and its graphene oxide (GO) counterpart on the basis of in vitro toxicological assessments are reported and the effects correlated with the physiochemical properties of the tested nanomaterials. Upon 24 h exposure to the nanomaterials, a dose‐dependent cellular cytotoxic effect was exhibited and the HHG was observed to be more cytotoxic than its GO control. Detailed characterization revealed an extensive C?H sp3 network on the carbon backbone of HHG with few oxygen‐containing groups, as opposed to the presence of large amounts of oxygen‐containing groups on the GO. It is therefore hypothesized that the preferential adsorption of micronutrients on the surface of the HHG nanomaterial by means of hydrophobic interactions resulted in a reduction in the bioavailability of nutrients required for cellular viability. The nanotoxicological profile of highly hydrogenated graphene is assessed for the first time in our study, thereby paving the way for further evaluation of the toxicity risks involved with the utilization of various graphene‐related nanomaterials in the real world.  相似文献   
96.
Direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis of solutions of edible fats/oils yielded spectra useful for their rapid differentiation and classification. Results also reflected the individual fatty acid components and their degree of unsaturation. After dissolution in hexane, MALDI-MS analysis revealed spectra showing characteristic triacylglycerols (TAGs), the main fat/oil components, as sodium adduct ions. The Euclidean distances calculated using the mass and intensity values for 20 TAGs were used to evaluate and compare spectra. With cluster analysis, animal fats grouped together differently than vegetable oils and the individual oils grouped together by type. The ion abundances for the individual TAGs and their presumed compositions were used to approximate the overall fatty acid composition of canola, soybean, corn, olive and peanut oil, as well as lard. Using this approach the calculated fatty acid compositions and degree of unsaturation generally fell within about 4% of literature values. When the degree of saturation was compared with values calculated from the package labeling the differences were about 7%.  相似文献   
97.
Structures of the complexes [Cr(V)O(ehba)(2)](-), [Cr(IV)O(ehbaH)(2)](0), and [Cr(III)(ehbaH)(2)(OH(2))(2)](+) (ehbaH(2) = 2-ethyl-2-hydroxybutanoic acid) in frozen aqueous solutions (10 K, [Cr] = 10 mM, 1.0 M ehbaH(2)/ehbaH, pH 3.5) have been determined by single- and multiple-scattering fitting of X-ray absorption fine structure (XAFS) data. An optimal set of fitting parameters has been determined from the XAFS calculations for a compound with known crystal structure, Na[Cr(V)O(ehba)(2)] (solid, 10 K). The structure of the Cr(V) complex [Cr(V)O(ehba)(2)](-) does not change in solution in the presence of excess ligand. Contrary to the earlier suggestions made from the kinetic data (Ghosh, M. C.; Gould, E. S. J. Chem. Soc., Chem. Commun. 1992, 195-196), the structure of the Cr(IV) complex (generated by the Cr(VI) + As(III) + ehbaH(2) reaction) is close to that of the Cr(V) complex (five-coordinate, distorted trigonal bipyramidal) and different from that of the Cr(III) complex (six-coordinate, octahedral). For both Cr(V) and Cr(IV) complexes, some disorder in the position of the oxo group is observed, which is consistent with but not definitive for the presence of geometric isomers. The structure of the Cr(IV) complex differs from that of Cr(V) by protonation of alcoholato groups of the ligands, which leads to significant elongation of the corresponding Cr-O bonds (2.0 vs 1.8 A). This is reflected in the different chemical properties reported previously for the Cr(IV) and Cr(V) complexes, including their reactivities toward DNA and other biomolecules in relation to Cr-induced carcinogenicity.  相似文献   
98.
We have developed four spectroscopic data-activity relationship (SDAR) models of monodechlorination of 32 chlorinated benzene compounds in anaerobic estuarine sediment. The SDAR models were based on combinations of 13C nuclear magnetic resonance (NMR), infrared absorption (IR), and electron ionization mass spectrometric (EI MS) data. The SDAR models segregated the 32 compounds into 17 readily monodechlorinated compounds and 15 not readily monodechlorinated compounds. The SDAR model based on 13C NMR, IR, and EI MS data gave a leave-one-out cross-validation of 93.8%. The SDAR model based on a composite of 13C NMR and IR data gave a leave-one-out cross-validation of 90.6%. The SDAR model based on a composite of IR and EI MS data gave a leave-one-out cross-validation of 84.4%. The SDAR model based on a composite of 13C NMR and EI MS data gave a leave-one-out cross-validation of 84.4%. These reliable SDAR models provide a rapid and simple way to predict whether a chlorinated benzene compound will readily go through monodechlorination. The FDA has filed a patent application on methods of using any combination of spectral data (NMR, MS, UV-vis, IR, and fluorescence, phosphorescence) to model a chemical, physical, or biological endpoint.  相似文献   
99.
The uptake of gaseous ethanol, 1,1,1-trifluoroethanol, acetone, chloral (CCl(3)CHO), and fluoral (CF(3)CHO) on ice films has been investigated using a coated-wall flow tube at temperatures 208-228 K corresponding to the upper troposphere (UT), with a mass spectrometric measurement of gas concentration. The uptake was largely reversible and followed Langmuir-type kinetic behavior, i.e., surface coverage increased with the trace gas concentration approaching a maximum surface coverage at a gas phase concentration of N(max) ~ (2-4) × 10(14) molecules cm(-3), corresponding to a surface coverage of ~30% of a monolayer (ML). The equilibrium partition coefficients, K(LinC), were obtained from the experimental data by analysis using the simple Langmuir model for specific conditions of temperature and concentration. The analysis showed that the K(LinC) depend only weakly on surface coverages. The following expressions described the temperature dependence of the partition coefficients (K(LinC)) in centimeters, at low coverage for ethanol, trifluoroethanol, acetone, chloral, and fluoral: K(LinC) = 1.36 × 10(-11)?exp(5573.5/T), K(LinC) = 3.74 × 10(-12)?exp(6427/T), K(LinC) = 3.04 × 10(-9)?exp(4625/T), K(LinC) = 7.52 × 10(-4)?exp(2069/T), and K(LinC) = 1.06 × 10(-2)?exp(904/T). For acetone and ethanol the enthalpies and entropies of adsorption derived from all available data showed systematic temperature dependence, which is attributed to temperature dependent surface modifications, e.g., QLL formation. For chloral and fluoral, there was an irreversible component of uptake, which was attributed to hydrate formation on the surface. Rate constants for these surface reactions derived using a Langmuir-Hinshelwood mechanism are reported.  相似文献   
100.
By taking advantage of the hydrophobicity of dry polystyrene colloidal crystal (opal) films and the large surface tension of water, a convectively self-assembled polystyrene opal film on a hydrophilic glass substrate can be peeled off from the substrate and floated on the water surface. A layer transfer technique was developed to sequentially stack floating opal films of different sphere sizes, resulting in opaline hetero photonic crystals. The feasibility of this technique to planar defect engineering in a self-assembled colloidal photonic crystal was also demonstrated. Both structural observation and optical characterization confirmed the crystalline integrity of the resultant opaline heterostructures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号