首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1549篇
  免费   29篇
  国内免费   6篇
化学   975篇
晶体学   8篇
力学   60篇
数学   88篇
物理学   453篇
  2020年   19篇
  2019年   14篇
  2016年   21篇
  2015年   15篇
  2014年   31篇
  2013年   63篇
  2012年   44篇
  2011年   68篇
  2010年   50篇
  2009年   35篇
  2008年   60篇
  2007年   42篇
  2006年   54篇
  2005年   28篇
  2004年   40篇
  2003年   23篇
  2002年   45篇
  2001年   40篇
  2000年   39篇
  1999年   36篇
  1998年   25篇
  1997年   26篇
  1996年   34篇
  1995年   35篇
  1994年   27篇
  1993年   32篇
  1992年   27篇
  1991年   30篇
  1990年   22篇
  1989年   24篇
  1988年   20篇
  1987年   27篇
  1986年   14篇
  1985年   27篇
  1984年   25篇
  1983年   25篇
  1982年   20篇
  1981年   24篇
  1980年   31篇
  1979年   22篇
  1978年   17篇
  1977年   16篇
  1976年   19篇
  1975年   15篇
  1974年   21篇
  1973年   23篇
  1970年   19篇
  1969年   18篇
  1968年   14篇
  1967年   16篇
排序方式: 共有1584条查询结果,搜索用时 183 毫秒
991.
992.
Ferroelectric lithium niobate crystals offer a great potential for applications in modern optics. To provide powerful optical components, tailoring of key material parameters, especially of the refractive index n and the ferroelectric domain landscape, is required. Irradiation of lithium niobate crystals with accelerated ions causes strong structured modifications in the material. The effects induced by low-mass, high-energy ions (such as 3He with 41?MeV, which are not implanted, but transmit through the entire crystal volume) are reviewed. Irradiation yields large changes of the refractive index ??n, improved domain engineering capability within the material along the ion track, and waveguiding structures. The periodic modification of ??n as well as the formation of periodically poled lithium niobate (PPLN) (supported by radiation damage) is described. Two-step knock-on displacement processes, 3He??Nb and 3He??O causing thermal spikes, are identified as origin for the material modifications.  相似文献   
993.
A superfine expanded graphite (s‐EG) fiber material was investigated as an anode material for lithium‐based batteries. The fibers were prepared by decomposition of dicarbon monofluoride‐intercalated graphite. The high resolution transmission electron microscopy (HRTEM) images showed the fiber thickness in range of 2–3 nm with several microns in length. Lithium storage capacity in this material was measured in lithium half cells. High lithium storage capacity of about 1000 mAh · g–1 at a rate of C/10, corresponding to Li3C6 composition was obtained. The material showed fairly good rate capability exhibiting lithium storage capabilities even at 60C. As a effect of ball milling, the s‐EG showed crystallographic ordering in the sample with reduced the lithium storage capacity corresponding to composition of LiC6. A simple mathematical relation to account for the excess lithium storage capacity in this material is put forward.  相似文献   
994.
Possible three‐dimensional diffusion pathways of lithium ions in crystalline lithium argyrodites are discussed based on earlier studies of local dynamics and site preferences. The specific Li‐ionic conductivities of the lithium argyrodites Li7PS6 and Li6PS5X (X: Cl, Br, I) and their temperature dependences are measured by impedance spectroscopy using different electron‐blocking and ion‐blocking electrode systems. Measurements were carried out between 160 K and 550 K depending on the respective sample. Bulk and grain boundary contributions and the influence of sample preparation are discussed. Typical values for the ionic conductivities at room temperature are in the range 10–7 to 10–5 S ·  cm–1 and at 500 K between 10–6 and 10–3 S ·  cm–1. Thermal activation energies are in the range 0.16 to 0.56 eV. The electronic conductivity at room temperature was measured by polarization measurements for the samples Li6PS5X (X: Cl, Br) and was shown to be in the order of magnitude of 10–8 S ·  cm–1. Chemical diffusion coefficients of lithium were calculated based on the polarization measurements. For Li6PS5Br a high value of 3.5 × 10–6 cm2 · s–1 was found.  相似文献   
995.
The formation of fractal silica networks from a colloidal initial state was followed in situ by ion conductivity measurements. The underlying effect is a high interfacial lithium ion conductivity arising when silica particles are brought into contact with Li salt-containing liquid electrolytes. The experimental results were modeled using Monte Carlo simulations and tested using confocal fluorescence laser microscopy and ζ-potential measurements.  相似文献   
996.
We report a novel experimental approach to derive quantitative concentration map of light elements in whole cells by combining two complementary nano-probe methods: X-ray fluorescence microscopy (XRFM) and atomic force microscopy (AFM). The concentration is derived by normalizing point-by-point the elemental (here Mg) spatial distribution obtained by XRFM, by the thickness measured using AFM. The considerable difference between the elemental distribution and the concentration maps indicates that this procedure is essential to obtain reliable information on the role and function of elements in whole cells.  相似文献   
997.
A set of arenes (phenylacetylene, indene, and naphthalene cations and C(11)H(9)(+) isomers) was produced from 2,4-hexadiyne diluted in helium in a hot-cathode discharge source. The mass-selected ions were codeposited with neon at 6 K and investigated by electronic absorption spectroscopy. This reveals that fused-ring species are readily formed from an acyclic precursor in such a source. After photobleaching of matrices containing C(11)H(9)(+), neutral C(11)H(9)(?) radicals were also characterized. Assignment of the observed transitions to different m/z = 141 cationic and corresponding neutral isomers is given and supported by experiments using other precursors, fluorescence measurements, and time-dependent density functional and second-order approximate coupled cluster calculations.  相似文献   
998.
Melting reactions of Cu, CuCl, S, and Bi2S3 yield black, shiny needles of Cu22(1)Bi12S21(1)Cl16(1). The compound decomposes peritectically at 649(5) K. Oxidation state +I of the copper atoms is supported by Cu-K-XANES. The compound crystallizes in the hexagonal space group P6/m with a=2116.7(7) pm and c=395.17(5) pm. Seven anions coordinate each of the two independent bismuth cations in the shape of mono-capped trigonal prisms. These polyhedra share edges and faces to form trigonal and hexagonal tubes running along [0 0 1]. The hexagonal tubes are centered by chloride ions, which are surrounded by disordered copper cations. The majority of copper cations are distributed over numerous sites between the tubes. The Joint Probability Density Function (JPDF) reveals a continuous pathway along [0 0 1]. The high mobility of the copper cations along [0 0 1] was demonstrated by impedance spectroscopy and DC polarization measurements on single crystals. The ionic conductivity at 450 K is about σion=0.06 S cm−1, and the activation energy for Cu+ ion conduction is Ea=0.44 eV. The chemical diffusion coefficient of copper is in the order of Dcuδ=1019 cm−3 at 420 K. The electronic band gap (p-type conductor) was determined as Eg=0.06 eV. At room temperature the thermal conductivity of a pressed pellet is about κ=0.3 W K−1 m−1 and the Seebeck coefficient is S=43 μV K−1.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号