首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   6篇
  国内免费   2篇
化学   122篇
晶体学   1篇
力学   6篇
数学   1篇
物理学   22篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   6篇
  2019年   5篇
  2018年   8篇
  2017年   10篇
  2016年   16篇
  2015年   6篇
  2014年   18篇
  2013年   19篇
  2012年   18篇
  2011年   13篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
排序方式: 共有152条查询结果,搜索用时 31 毫秒
91.
In this paper, the influence of calcination temperature and time has been investigated on the structural, morphological, optical, and photo-catalytic properties of Sn/Ce co-doped TiO2 nano-powders prepared via sol–gel process. They were calcined at the temperatures in the range of 475–975 °C for 1 and 2 h. The photocatalytic ability of TiO2 powders was evaluated by means of methylene blue degradation experiments conducted under the irradiation of simulated solar light. The X-ray diffraction results showed that the tensile strain in the host lattice was present. The comparison with undoped and Sn or Ce-doped TiO2, co-doped TiO2 shows an obviously higher catalytic activity under visible light irradiation. The absorbance spectrum of Ce and Sn co-doped TiO2 exhibited significant red-shift to visible region. The red-shift is caused by the appearance of a new electronic state in the middle of the TiO2 band-gap. FESEM images show the formation of doped TiO2 nanoparticles with small size in structure and spherical in shape. The FTIR spectra exhibited peaks corresponding to the anatase and rutile structure phases of TiO2.  相似文献   
92.
We present a study on the synthesis, characterization, and application of phthalhydrazide‐functionalized MCM‐41 (P‐MCM‐41) as a novel and efficient heterogeneous basic catalyst. The described catalyst was fully characterized via various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X‐ray (EDX), X‐ray diffraction (XRD), and Fourier transform infrared (FT‐IR). P‐MCM‐41 efficiently catalyzed the four‐component reaction of arylaldehydes, Meldrum's acid, alkyl isocyanides, and isoquinoline in CHCl3 to prepare pyrrolo[2,1‐a]isoquinolines in good yields.  相似文献   
93.
Metiamide is a class of medications called H2-receptor antagonist or H2 blockers. It decreases the amount of acid made in the stomach. It is commonly used in the treatment for peptic ulcer disease and gastroesophageal reflux disease. In this study, the metiamide tautomer stability, structural data, HOMO and LUMO (energies and shapes), ΔΕ HOMO–LUMO gaps, UV–visible data and graphs, dipole moments, Mulliken charges, and thermodynamic and kinetic stabilities in aqueous media as a biological solvent and some of the different media (vacuum, H2O, Et-OH and DMSO) were investigated for the tautomers of metiamide by the density functional theory DFT-B3LYP/6-31G* method. The results presented that the probability of the adaptability and compatibility of which tautomer (T1T6) are better than the other tautomers for interactions with the pattern and structural map of the H2-receptor. The diversities of the interaction points and mosaic patterns of the T3 and T4 tautomers in H2O media with the imaginary H2-receptor were investigated.  相似文献   
94.
Magnetic CoFe2O4/SiO2 spinel-type nanocomposites have been fabricated by a sol-gel method in the presence of various acids. Their structural, morphological and magnetic properties were characterized by XRD, SEM, TEM, FTIR, VSM and EDX which revealed that they are formed in the presence of all precursors. TEM analysis indicates homogeneous and porous spherical morphology with nanosize grains 10–20 nm in diameter in the presence of salicylic acid. Electrochemical sensor application of nanocrystalline CoFe2O4/SiO2 synthesized by salicylic acid for determination of L-cysteine was investigated using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). DPV indicates that the sensor shows remarkable sensitivity for the determination of L-Cys. The response of a glassy carbon electrode modified with CoFe2O4/SiO2 is linear in the 0.02–425 μM L-Cys concentration range, with a 0.20 μM detection limit (at an S/N ratio of 3). The electrode produces a negligible current response for tryptophan, glutamic acid and citric acid at the working potential applied (+0.748 V vs Ag/AgCl). The electrode is reliable, simple, rapidly prepared, precise, and the method does not require extensive sample treatment.
Graphical abstract A CoFe2O4/SiO2 magnetic nanocomposite was synthesized by a sol-gel auto combustion method in the presence of various acids as precursors. A highly sensitive electrochemical sensor was fabricated for determination of trace amount of L-cysteine using a glassy carbon electrode modified with the nanocomposite.
  相似文献   
95.

We consider entangled state production utilizing a full optomechanical arrangement, based on which we create entanglement between two far three-level V-type atoms using a quantum repeater protocol. At first, we consider eight identical atoms (1,2,? ,8), while adjacent pairs (i,i +?1) with i =?1,3,5,7 have been prepared in entangled states and the atoms 1, 8 are the two target atoms. The three-level atoms (1,2,3,4) and (5,6,7,8) distinctly become entangled with the system including optical and mechanical modes by performing the interaction in optomechanical cavities between atoms (2,3) and (6,7), respectively. Then, by operating appropriate measurements, instead of Bell state measurement which is a hard task in practical works, the entangled states of atoms (1,4) and (5,8) are achieved. Next, via interacting atoms (4,5) of the pairs (1,4) and (5,8) and operating proper measurement, the entangled state of target atoms (1,8) is obtained. In the continuation, entropy and success probability of the produced entangled state are then evaluated. It is observed that the time period of entropy is increased by increasing the mechanical frequency (ωM) and by decreasing optomechanical coupling strength to the field modes (G). Also, in most cases, the maximum of success probability is increased by decreasing G and via decreasing ωM.

  相似文献   
96.
A dopamine (DA) biosensor was developed based on polypyrrole/tannin/cetyltrimethylammonium bromide (PPy/TA/CTAB) nanocomposite and central composite rotatable design (CCRD) was employed for the optimization of conditions. Chemical polymerization of the PPy/TA in the presence of a cationic surfactant, CTAB, reduced the particle size of composite and a rod-like structure with a lumpy surface and high porosity was observed for nanocomposite justifying the highest current response for the modified electrode. Amperometry and differential pulse voltammetry analyses were applied for all electrochemical measurements and DA detection in the range of 0.5–100 μM. The good adhesion of nanocomposite on the electrode surface, as well as porosity and high surface area of the modified electrode, enhanced the diffusion of DA molecules inside the matrix. Amperometry analysis of the Screen printed carbon electrode/PPy/TA/CTAB modified electrode displayed a good sensitivity of 0.039 μA (μM)−1 toward DA with the limit of detection of 2.9 × 10–7 M. The modified biosensor also excludes the interfering species of ascorbic acid and uric acid which makes this sensor appropriate for DA determination. The proposed biosensor showed an acceptable reproducibility and repeatability with low relative standard deviations of 4.8% and 4.4%, respectively.  相似文献   
97.
98.
99.
This study describes the polymerization of graphene oxide (GO) nanosheet to reduced‐GO‐aminoclay (RGC) by covalent functionalization of chemically reactive epoxy groups on the basal planes of GO with amine groups of magnesium phyllosilicate clay (known as aminoclay). The resulting RGC sheets were characterized and applied to support platinum nanostructures at toluene/water interface. Pt nanoparticles (NPs) with diameters about several nanometers were adhered to RGC sheets by chemical reduction of [PtCl2(cod)] (cod = cis,cis‐1,5‐cyclooctadiene) complex. Catalytic activity of Pt NPs thin films were investigated in the methanol oxidation reaction. Cyclic voltammetry results exhibit that the Pt/reduced‐GO (RGO) and Pt/RGC thin films showed improved catalytic activity in methanol oxidation reaction in comparison to other Pt NPs thin films, demonstrating that the prepared Pt/RGO and Pt/RGC thin films are promising catalysts for direct methanol fuel cell.  相似文献   
100.
In the study, anti-Candida activity and phenol contents of Lythrum salicaria L. calli and wild species have been evaluated. The seeds of L. salicaria (Lythraceae), collected from Lahidjan City in the north of Iran, were cultured in Murashige and Skoog medium (MSM) with a supplement, gibberellin, to germinate. Callus inductions were performed from segments of seedling on MSM containing different concentrations of plant growth regulators, 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). The activity of calluses extracts, wild plant, gallic acid, and 3,3′,4′-tri-O-methylellagic acid-4-O-β-d-glucopyranoside (TMEG) as the main phenolic compounds against Candida albicans was assessed using cup plate diffusion method. The total phenols contents of calli and wild plant extracts were analyzed using Folin–Ciocalteu reagent. The callus formation in MSM supplemented with various concentrations of 2,4-D and BAP were 0–100 %. Anti-Candida activity of callus extract which obtained from MSM supplemented with 2,4-D and BAP (1 mg?dm?3) was similar to the wild plant extract. Minimum inhibitory concentration values of gallic acid and TMEG were obtained as 0.312 and 2.5 mg?cm?3, respectively. Gallic acid equivalent values in all treatments were from 0 to 288 μg GAE mg?1. Phenolic contents of plant aerial parts (331?±?3.7 μg GAE mg?1) and the callus, which developed in MSM including 1 mg?dm?3 of both 2,4-D and BAP, showed the same phenolic value and exhibited anti-Candida extract activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号