首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   757篇
  免费   61篇
  国内免费   9篇
化学   497篇
力学   52篇
数学   104篇
物理学   174篇
  2024年   2篇
  2023年   1篇
  2022年   24篇
  2021年   42篇
  2020年   55篇
  2019年   50篇
  2018年   44篇
  2017年   51篇
  2016年   59篇
  2015年   56篇
  2014年   56篇
  2013年   65篇
  2012年   80篇
  2011年   81篇
  2010年   36篇
  2009年   28篇
  2008年   27篇
  2007年   14篇
  2006年   11篇
  2005年   11篇
  2004年   10篇
  2003年   3篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1994年   2篇
  1990年   1篇
  1986年   4篇
  1984年   2篇
  1983年   1篇
排序方式: 共有827条查询结果,搜索用时 15 毫秒
821.
Vitamin B12 (VB12) is one of the essential vitamins for the body, which is sensitive to light, heat, oxidizing agents, and acidic and alkaline substances. Therefore, the encapsulation of VB12 can be one of the ways to protect it against processing and environmental conditions in food. In this work, the influence of pectin concentration (0.5–1% w/v), whey protein concentrate (WPC) level (4–8% w/v) and pH (3–9) on some properties of VB12-loaded pectin–WPC complex carriers was investigated by response surface methodology (RSM). The findings showed that under optimum conditions (1:6.47, pectin:WPC and pH = 6.6), the encapsulation efficiency (EE), stability, viscosity, particle size and solubility of complex carriers were 80.71%, 85.38%, 39.58 mPa·s, 7.07 µm and 65.86%, respectively. Additionally, the formation of complex coacervate was confirmed by Fourier-transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM). In addition, it was revealed that the most important factor in VB12 encapsulation was pH; at a pH < isoelectric point of WPC (pH = 3), in comparison with higher pH values (6 and 9), a stronger complex was formed between pectin and WPC, which led to an increase in EE, lightness parameter, particle size and water activity, as well as a decrease in the zeta-potential and porosity of complex carriers.  相似文献   
822.
Pile-up distortion is a common problem in many nuclear radiation detection systems, especially in high count rates. It can be solved by hardware-based pile-up rejections, but there is no complete pile-up elimination in this way. Additionally, the methods can lead to poor quantitative results. Generally, time characteristics of semiconductor detector pulses are different from Scintillator detector pulses due to ballistic deficit. Hence, pulse processing-based pile-up correction in the detectors should consider this specification. In this paper, the artificial neural network pile-up correction method is applied for silicon detector piled-up pulses. For this purpose, the interaction of photons with a silicon detector is simulated by the MCNP4c code and the pulse current is calculated by Ramo's theorem. In this approach, we use a sub-Nyquist frequency sampling. The results show that the proposed method is reliable for pile-up correction and ballistic deficit in semiconductor detectors. The technique is remarkable for commercial considerations and high-speed, real-time calculations.  相似文献   
823.
We have synthesized an organic–inorganic polyaniline–halloysite nanotube composite by an in situ polymerization method. This nanocomposite is immobilized on a stainless‐steel wire and can be used as a fiber coating for solid‐phase microextraction. It was found that our new solid‐phase microextraction fiber is an excellent adsorbent for the extraction of some volatile organic compounds in aqueous samples in combination with gas chromatography and mass spectrometry. The coating can be prepared easily, is mechanically stable, and exhibits relatively high thermal stability. It is capable of extracting phenolic compounds from water samples. Following thermal desorption, the phenols were quantified by gas chromatography with mass spectrometry. The effects of extraction temperature, extraction time, sample ionic strength, stirring rate, pH, desorption temperature and desorption time were studied. Under optimal conditions, the repeatability for one fiber (n = 5), expressed as the relative standard deviation, is between 6.2 and 9.1%. The detection limits range from 0.005 to 4 ng/mL. The method offers the advantage of being simple to use, with a shorter analysis time, lower cost of equipment and higher thermal stability of the fiber in comparison to conventional methods of analysis.  相似文献   
824.
A simple, rapid, and sensitive method for the determination of naproxen and ibuprofen in complex biological and water matrices (cow milk, human urine, river, and well water samples) has been developed using ultrasound‐assisted magnetic dispersive solid‐phase microextraction. Magnetic ethylendiamine‐functionalized graphene oxide nanocomposite was synthesized and used as a novel adsorbent for the microextraction process and showed great adsorptive ability toward these analytes. Different parameters affecting the microextraction were optimized with the aid of the experimental design approach. A Plackett–Burman screening design was used to study the main variables affecting the microextraction process, and the Box–Behnken optimization design was used to optimize the previously selected variables for extraction of naproxen and ibuprofen. The optimized technique provides good repeatability (relative standard deviations of the intraday precision 3.1 and 3.3, interday precision of 5.6 and 6.1%), linearity (0.1–500 and 0.3–650 ng/mL), low limits of detection (0.03 and 0.1 ng/mL), and a high enrichment factor (168 and 146) for naproxen and ibuprofen, respectively. The proposed method can be successfully applied in routine analysis for determination of naproxen and ibuprofen in cow milk, human urine, and real water samples.  相似文献   
825.
The present paper focuses on the analysis of unsteady flow and heat transfer regarding an axisymmetric impinging synthetic jet on a constant heat flux disc. Synthetic jet is a zero net mass flux jet that provides an unsteady flow without any external source of fluid. Present results are validated against the available experimental data showing that the SST/k − ω turbulence model is more accurate and reliable than the standard and low-Re k − ε models for predicting heat transfer from an impinging synthetic jet. It is found that the time-averaged Nusselt number enhances as the nozzle-to-plate distance is increased. As the oscillation frequency in the range of 16–400 Hz is increased, the heat transfer is enhanced. It is shown that the instantaneous Nu distribution along the wall is influenced mainly by the interaction of produced vortex ring and wall boundary layer. Also, the fluctuation level of Nu decreases as the frequency is raised.  相似文献   
826.
827.
Sodium4-hydroxy-3-([2-picolinoylhydrazineylidene]methyl)benzenesulfonate (NaH2PH) was synthesized as a novel water-soluble ligand, by the condensation of picolinohydrazide with sodium 3-formyl-4-hydroxybenzenesulfonate. The (NaH2PH) ligand and its isolated Co (II), Fe (III), Hg (II), and Pd (II) complexes were analyzed by elemental analysis and characterized by spectroscopic (Fourier transform infrared spectroscopy, UV–visible, powder XRD, 1H NMR,13C NMR, MS) and magnetic measurements. By comparing IR spectra of both ligand and the metal complexes, one can assume that the (NaH2PH) ligand behaves as a bi-negative tetradentate (ONNO) in [Co (NaPH)(H2O)2].3H2O, and a mono-negative tridentate (ONO) in [Fe (NaPH)Cl2(H2O)] complex, whereas in [Hg2(NaPH)Cl2(H2O)] complex, (NaH2PH) coordinates as a bi-negative pentadentate (ONNNO) ligand via deprotonated OH group of phenolic ring (C=N)Py and (C=N*) coordinated to one of Hg (II) ion and the oxygen atom of enolic group and (C=N)az group with the another Hg (II) ion. Moreover, (NaH2PH) acts as bi-negative tridentate (ONO) ligand in [Pd (NaPH)(H2O)].2H2O complex. The geometries of complexes were suggested based on the UV–visible spectra, magnetic measurements and confirmed by applying discrete Fourier transform (DFT) optimization studies. The thermal fragmentation of both [Pd (NaPH)(H2O)].2H2O and [Co (NaPH)(H2O)2].3H2O complexes was performed, and the kinetic and thermodynamic parameters were computed using the Coats–Redfern and Horowitz–Metzger methods. The redox behavior of divalent ions of cobalt and mercury were discussed by the cyclic voltammetry technique in the presence and absence of (NaH2PH) ligand. Biological potencies of the ligand and its metal complexes were evaluated as antioxidants (ABTS and DPPH), anticancer, DNA, and antimicrobial (Staphylococcus aureus and Bacillus subtilis as Gram (+) bacteria, Escherichia coli and Pseudomonas aeruginosa as Gram (−) bacteria, and Candida albicans as fungi).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号