首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   845篇
  免费   25篇
  国内免费   12篇
化学   490篇
晶体学   3篇
力学   42篇
数学   163篇
物理学   184篇
  2023年   4篇
  2022年   9篇
  2021年   17篇
  2020年   20篇
  2019年   22篇
  2018年   23篇
  2017年   18篇
  2016年   22篇
  2015年   22篇
  2014年   31篇
  2013年   48篇
  2012年   37篇
  2011年   49篇
  2010年   36篇
  2009年   38篇
  2008年   51篇
  2007年   38篇
  2006年   39篇
  2005年   28篇
  2004年   36篇
  2003年   15篇
  2002年   22篇
  2001年   16篇
  2000年   16篇
  1999年   11篇
  1998年   16篇
  1997年   7篇
  1996年   10篇
  1995年   12篇
  1994年   8篇
  1993年   8篇
  1992年   5篇
  1991年   17篇
  1990年   19篇
  1989年   16篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1984年   7篇
  1983年   8篇
  1981年   3篇
  1980年   6篇
  1979年   5篇
  1978年   6篇
  1977年   6篇
  1976年   8篇
  1973年   3篇
  1972年   5篇
  1948年   2篇
  1914年   2篇
排序方式: 共有882条查询结果,搜索用时 171 毫秒
871.
A fully automated multipumping flow system (MPFS) using water-soluble CdTe quantum dots (QD) as sensitizers is proposed for the chemiluminometric determination of the anti-diabetic drugs gliclazide and glipizide in pharmaceutical formulations. The nanocrystals acted as enhancers of the weak CL emission produced upon oxidation of sulphite by Ce(IV) in acidic medium, thus improving sensitivity and expanding the dynamical analytical concentration range. By interacting with the QD, the two analytes prevented their sensitizing effect yielding a chemiluminescence quenching of the Ce(IV)-SO32−CdTe QD system. The pulsed flow inherent to MPFS assured a fast and efficient mixing of all solutions inside the flow cell, circumventing the need for a reaction coil and facilitating the monitoring of the short-lived generated chemiluminescent species. QD crystal size, concentration and spectral region for measurement were investigated.  相似文献   
872.
Mono and bicomponent TiO2 and WO3 nanoparticles were synthesized inside Vycor® glass pores, by cycles of impregnation of the glass with the respective oxide precursor followed by its thermal decomposition. The impregnation-decomposition cycle (IDC) methodology promoted a linear mass increase of the glass matrix, and allowed tuning the nanoparticle size. X-ray diffraction and Raman spectroscopy data allowed identifying the formation of TiO2 as anatase phase, while WO3 is a mixture of the γ-WO3 (monoclinic) and δ-WO3 (triclinic) phases. High resolution transmission electron microscopy images revealed that for 3, 5, and 7 IDC, the TiO2 nanoparticles obtained presented average diameters of 3.4, 4.3, and 5.1 nm, and the WO3 nanoparticles have 2.9, 4.6, and 5.7 nm sizes. These TiO2 and WO3 monocomponent nanoparticles were submitted to IDC with the other oxide precursor, resulting in bicomponent nanoparticles. The broadening and shift of the Raman bands related to titanium and tungsten oxides suggest the formation of hetero-structure core–shell nanoparticles with tunable core sizes and shell thicknesses.  相似文献   
873.
Stoichiometric bulk ingot material of the quaternary CdGaInSe4 was prepared by direct fusion of the constituent elements in vacuum-sealed silica tubes. Nearly stoichiometric films could be deposited by thermal evaporation of the ingot material in 10−3 Pa vacuum at a deposition rate 1.5 nm/s. Crystal structure investigation was carried out using X-ray diffractometry and transmission electron diffraction. Elemental composition was determined by means of energy-dispersive X-ray spectrometry. CdGaInSe4 possesses a tetragonal defective chalcopyrite structure (space group ) with lattice parameters a=0.5665 nm and c=1.1221 nm. All the films exhibited n-type conduction and ohmic behaviour with metallic films of Au, Cd, In, Ag and Sb. However, in the case of Al a nonlinear behaviour occurs. Analysis of the temperature dependence of the dark conductivity in the range 130-470 K has revealed three operating conduction mechanisms; a variable range hopping conduction process dominating at low temperatures below 270 K, followed by a transport of the charge carriers across intercrystalline barriers and grain boundaries in the temperature range 270-353 K, and finally an extrinsic conduction above 353 K.  相似文献   
874.
We show in this paper that a Hele-Shaw burner can be used for studying the development of premixed flame instabilities in a quasi-two dimensional configuration. It is possible to ignite a plane flame at the top of the cell, and to measure quantitatively the growth rates of the instability by image analysis. Experiments are performed with propane and methane-air mixtures. It is found that the most unstable wavelength, and the maximum linear growth rate of perturbations, directly measured in the present experiments, have the same order of magnitude as those previously measured on flames propagating freely downwards in wide tubes.  相似文献   
875.
Evolution of the commutation concept has lead to the proposal and development of different generations of flow analyzers. Since the inception of the air-segmented flow systems till the availability of modern flow injection, sequential-injection and other flow-based analytical systems, a noteworthy improvement of the commutating devices has been noted.

Multi-functional manifold is described as a polyvalent approach for methodology implementation in a flow analyzer. It permits the investigation of mixing conditions under different flow patterns (unsegmented, segmented, monosegmented) with optional exploitation of the stopped-flow approach. For this purpose, spectrophotometric or turbidimetric measurements eventually affected by Schlieren noise were considered. Potentialities and limitations of the manifold are discussed in relation with methods based on relatively fast or slow chemical reactions. As applications, phosphate and chloride determinations in plant digests and natural waters were selected.

The manifold is characterized by high versatility and may work in connection with different flow configurations. Development will certainly lead to simple, versatile and miniaturized analyzers, able to run samples in a personalized fashion. In addition, random reagent selection, full automation, expansion of the analytical application range and increasing potentialities of the already existing methodologies are devised.  相似文献   

876.
877.
Reaction solvent was previously shown to influence the selectivity of Pd/PtBu3-catalyzed Suzuki–Miyaura cross-couplings of chloroaryl triflates. The role of solvents has been hypothesized to relate to their polarity, whereby polar solvents stabilize anionic transition states involving [Pd(PtBu3)(X)] (X = anionic ligand) and nonpolar solvents do not. However, here we report detailed studies that reveal a more complicated mechanistic picture. In particular, these results suggest that the selectivity change observed in certain solvents is primarily due to solvent coordination to palladium. Polar coordinating and polar noncoordinating solvents lead to dramatically different selectivity. In coordinating solvents, preferential reaction at triflate is likely catalyzed by Pd(PtBu3)(solv), whereas noncoordinating solvents lead to reaction at chloride through monoligated Pd(PtBu3). The role of solvent coordination is supported by stoichiometric oxidative addition experiments, density functional theory (DFT) calculations, and catalytic cross-coupling studies. Additional results suggest that anionic [Pd(PtBu3)(X)] is also relevant to triflate selectivity in certain scenarios, particularly when halide anions are available in high concentrations.

In the presence of the bulky monophosphine PtBu3, palladium usually prefers to react with Ar–Cl over Ar–OTf bonds. However, strongly coordinating solvents can bind to palladium, inducing a reversal of selectivity.

Oxidative addition is a key elementary step in diverse transformations catalyzed by transition metals.1 For instance, this step is common to traditional cross-coupling reactions, which are among the most widely used methods for small molecule synthesis. During the oxidative addition step of cross-coupling reactions, a low valent metal [usually Pd(0)] inserts into a C–X bond with concomitant oxidation of the metal by two electrons. The “X” group of the C–X bond is commonly a halogen or triflate. Despite a wealth of research into this step,2–5 uncertainties remain about its mechanistic nuances. The mechanistic details are especially pertinent to issues of selectivity that arise when substrates contain more than one potentially reactive C–X bond.6One of the best-studied examples of divergent selectivity at the oxidative addition step is the case of Pd-catalyzed Suzuki couplings of chloroaryl triflates. In 2000, Fu reported that a combination of Pd(0) and PtBu3 in tetrahydrofuran (THF) effects selective coupling of 1 with o-tolylB(OH)2via C–Cl cleavage, resulting in retention of the triflate substituent in the final product 2a (Scheme 1A).7 In contrast, the use of PCy3 (ref. 7) or most other phosphines8 provides complementary selectivity (product 2b) under similar conditions. The unique selectivity imparted by PtBu3 was later attributed to this ligand''s ability to promote a monoligated oxidative addition transition state on account of its bulkiness.5,8 Smaller ligands, on the other hand, favor bisligated palladium, which prefers to react at triflate. The relationship between palladium''s ligation state and chemoselectivity has been rationalized by Schoenebeck and Houk through a distortion/interaction analysis.5 In brief, the selectivity preference of PdL2 is dominated by a strong interaction between the electron-rich Pd and the more electrophilic site (C–OTf). On the other hand, PdL is less electron-rich and its selectivity preference mainly relates to minimizing unfavorable distortion energy by reacting at the more easily-distorted C–Cl bond.Open in a separate windowScheme 1Seminal reports on the effects of (A) ligands and (B) solvents on the selectivity of cross-coupling of a chloroaryl triflate.5,7,9Proutiere and Schoenebeck later discovered that replacing THF with dimethylformamide (DMF, Scheme 1B, entry 1) or acetonitrile caused a change in selectivity for the Pd/PtBu3 system.9,10 In these two polar solvents, preferential reaction at triflate was observed, and PtBu3 no longer displayed its unique chloride selectivity. The possibility of solvent coordination to Pd was considered, as bisligated Pd(PtBu3)(solv) would be expected to favor reaction at triflate. However, solvent coordination was ruled out on the basis of two intriguing studies. First, DFT calculations using the functional B3LYP suggested that solvent-coordinated transition states are prohibitively high in free energy (about 16 kcal mol−1 higher than the lowest-energy monoligated transition structure). Second, the same solvent effect was not observed in a Pd/PtBu3-catalyzed base-free Stille coupling in DMF (Scheme 1B, entry 2). Instead, the Stille coupling was reported to favor reaction at chloride despite the use of a polar solvent. This result appears inconsistent with the possibility that solvent coordination induces triflate-selectivity, as coordination of DMF to Pd should be possible in both the Stille and Suzuki conditions, if it happens at all. Instead, it was proposed that the key difference between the Suzuki and Stille conditions was the absence of coordinating anions in the latter (unlike traditional Suzuki couplings, Stille couplings do not necessarily require basic additives such as KF to promote transmetalation). Indeed, when KF or CsF was added to the Stille reaction in DMF, selectivity shifted to favor reaction at triflate (Scheme 1B, entry 3), thereby displaying the same behavior as the Suzuki coupling in this solvent. On the basis of this and the DFT studies, it was proposed that polar solvents induce a switch in chemoselectivity if coordinating anions like fluoride are available by stabilizing anionic bisligated transition structures (Scheme 1B, right).However, our recent extended solvent effect studies produced confounding results.11 In a Pd/PtBu3-catalyzed Suzuki cross-coupling of chloroaryl triflate 1, we observed no correlation between solvent polarity and chemoselectivity (Scheme 2). Although some polar solvents such as MeCN, DMF, and dimethylsulfoxide (DMSO) favor reaction at triflate, a number of other polar solvents provide the same results as nonpolar solvents by favoring reaction at chloride. For example, cross-coupling primarily takes place through C–Cl cleavage when the reaction is conducted in highly polar solvents like methanol, water, acetone, and propylene carbonate. In fact, the only solvents that promote reaction at triflate are ones that are commonly thought of as “coordinating” in the context of late transition metal chemistry.12 These are solvents containing nitrogen, sulfur, or electron-rich oxygen lone pairs (nitriles, DMSO, and amides). The observed solvent effects were upheld for a variety of chloroaryl triflates and aryl boronic acids.11Open in a separate windowScheme 2Expanded solvent effect studies in the Pd/PtBu3-catalyzed Suzuki coupling.11We have sought to reconcile these observations with the earlier evidence9 against solvent coordination. Herein we report detailed mechanistic studies indicating that coordinating solvents alone are sufficient to induce the observed selectivity switch. In solvents like DMF and MeCN, stoichiometric oxidative addition is favored at C–OTf even in the absence of anionic additives. The apparent contradiction between our observations and the previously-reported DFT calculations and base-free Stille couplings is reconciled by a reevaluation of those studies. In particular, when dispersion is considered in DFT calculations, neutral solvent-coordinated transition structures involving Pd(PtBu3)(solv) become energetically feasible. Furthermore, we find that the selectivity analysis in the Stille couplings is convoluted by low yields, the formation of side products, and temperature effects. When these factors are disentangled, the Stille coupling in DMF displays selectivity similar to the Suzuki coupling in the same coordinating solvent. In light of these new results, anionic bisligated [Pd(PtBu3)(X)] does not appear to be the dominant active catalyst in nonpolar or polar solvents unless special measures are taken to increase the concentration of free halide, such as adding tetraalkylammonium halide salts or crown ethers.  相似文献   
878.
A custom-made glass capillary column coated with OV-1701-OH (88% methyl, 7% cyanopropyl, 5% phenylpolysiloxane) was used to analyze smoke samples from biomass combustion of different species of plants collected in the Amazon forest. CS2 was used as solvent in order to enhance the dissolution and analysis of the heavier molecular weight components. The performance of the column was monitored during the experiments and a moderate increase in activity was observed after taking the column to high analytical temperatures (390°C). Trennzahl values typically dropped 20–30% from 1.7/m to the average of 1.35/m. In general, the performance of the custom-made column was satisfactory and comparable to the commercial high temperature columns. The high temperature high resolution GC and GC-MS analyses revealed the presence of a number of high molecular weight components reported to occur in smoke aerosols for the first time. These components consisted of series of wax esters (long chain alcohols esterified with long chain fatty acids) with up to 58 carbon numbers, aliphatic hydrocarbons, triglycerides, triterpenyl esters (e.g. α- and β-amyryl stearate). Although other types of compounds were also detected, their complete structure elucidation solely by electron impact MS was not adequate and other techniques will be required.  相似文献   
879.
880.
Wound healing properties of plant extracts that contain the naphthoquinone natural products alkannin ( 1 ) and shikonin ( 2 ) have been known for many centuries. More recently, the biological properties of 1 , 2 , and related derivatives have been demonstrated experimentally, and their production both by cell cultures and chemical synthesis has been studied extensively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号