首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   775篇
  免费   51篇
化学   619篇
晶体学   4篇
力学   13篇
数学   71篇
物理学   119篇
  2024年   2篇
  2023年   5篇
  2022年   5篇
  2021年   9篇
  2020年   19篇
  2019年   23篇
  2018年   13篇
  2017年   10篇
  2016年   24篇
  2015年   38篇
  2014年   15篇
  2013年   35篇
  2012年   44篇
  2011年   58篇
  2010年   41篇
  2009年   26篇
  2008年   53篇
  2007年   49篇
  2006年   36篇
  2005年   45篇
  2004年   40篇
  2003年   24篇
  2002年   20篇
  2001年   21篇
  2000年   9篇
  1999年   9篇
  1998年   7篇
  1997年   9篇
  1996年   8篇
  1995年   14篇
  1994年   9篇
  1993年   8篇
  1992年   8篇
  1991年   7篇
  1990年   12篇
  1989年   8篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   8篇
  1984年   9篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1979年   7篇
  1976年   3篇
  1974年   6篇
  1973年   2篇
  1965年   1篇
  1956年   1篇
排序方式: 共有826条查询结果,搜索用时 15 毫秒
21.
22.
The silver(I) oxide mediated reactions of the gold(III) dichloride complex [{C6H3(CH2

uCl2] 2a with thiosalicylic or salicylic acid gives the respective complexes [{C6H3(CH2


)-2}] 3a (X=S) or 6b (X=O), containing chelating thiosalicylate or salicylate dianion ligands. X-ray studies show that for the thiosalicylate system, the thiosalicylate sulfur atom is trans to the N,N-dimethylamino group, whereas in the structure of the salicylate complex, it is the carboxylate group that is trans to NMe2. Both complexes show puckered metallacycles in the solid state. Electrospray mass spectrometry (ESMS) shows strong [M+H]+ and [2M+H]+ ions for both the gold-thiosalicylate and -salicylate complexes, and these ions possess a high stability towards cone voltage-induced fragmentation. ESMS was also used to identify a minor impurity, the bis(cyclo-aurated) cationic complex [A

Me2)-2-(OMe)-5}2]+ in the starting dihalide complex 2a and in the product 3a. This complex can be formed by reaction of Me4N[AuCl4] with 2 equivalents of the organomercury precursor [Hg{C6H3(CH2NMe2)-2-(OMe)-5}Cl]. The biological (antitumour, antimicrobial and antiviral) activities are also reported, and these reveal the complexes have moderate to high anti-tumour, antibacterial and antifungal activity.  相似文献   
23.
高岭石吸附乙烯和苯的Delft分子力学研究   总被引:1,自引:0,他引:1  
运用Delft分子力学(DMM)程序及其粘土和共轭烯烃力场,计算研究了高岭石对乙烯和苯的吸附作用,探讨了吸附对粘土晶体和有机分子的结构、电荷分布和能量的影响,求得了高岭石吸附乙烯和苯的吸附热等重要物理量.  相似文献   
24.
A detailed spectroscopic and electrochemical study of a series of novel phenolate bound complexes, of general formulas [M(L-L)(2)(box)](PF(6)), where M is Os and Ru, L-L is 2,2-bipyridine or 2,2-biquinoline, and box is 2-(2-hydroxyphenyl)benzoxazole, is presented. The objectives of this study were to probe the origin of the LUMOs and HOMOs in these complexes, to elucidate the impact of metal and counter ligand on the electronic properties of the complex, and to identify the extent of orbital mixing in comparison with considerably more frequently studied quinoid complexes. [M(L-L)(2)(box)](PF(6)) complexes exhibit a rich electronic spectroscopy extending into the near infrared region and good photostability, making them potentially useful as solar sensitizers. Electrochemistry and spectroscopy indicate that the first oxidation is metal based and is associated with the M(II)/(III) redox states. A second oxidative wave, which is irreversible at slow scan rates, is associated with the phenolate ligand. The stabilities of the oxidized complexes are assessed using dynamic electrochemistry and discussed from the perspective of metal and counter ligand (LL) identity and follow the order of increasing stability [Ru(biq)(2)(box)](+) < [Ru(bpy)(2)(box)](+) < [Os(bpy)(2)(box)](+). Electronic and resonance Raman spectroscopy indicate that the lowest energy optical transition for the ruthenium complexes is a phenolate (pi) to L-L (pi) interligand charge-transfer transition (ILCT) suggesting the HOMO is phenolate based whereas electrochemical data suggest that the HOMO is metal based. This unusual lack of correlation between redox and spectroscopically assigned orbitals is discussed in terms of metal-ligand orbital mixing which appears to be most significant in the biquinoline based complex.  相似文献   
25.
Herein we describe in detail the bonding properties and electrochemical behavior of the first known triosmium carbonyl clusters with a coordinated redox-active ligand 4,4',5,5'-tetramethyl-2,2'-biphosphinine (tmbp), the phosphorus derivative of 2,2'-bipyridine. The clusters investigated were [Os(3)(CO)(10)(tmbp)] (1) and its derivative [Os(3)(CO)(9)(PPh(3))(tmbp)] (2). The crystal structures of both clusters are compared with those of relevant compounds; they served as the basis for density functional theory (DFT and time-dependent DFT) calculations. The experimental and theoretical data reveal an unexpected and unprecedented bridging coordination mode of tmbp, with each P atom bridging two metal atoms. The tmbp ligand is formally reduced by transfer of two electrons from the triangular cluster core that consequently lacks one of the metal-metal bonds. Both 1 and 2 therefore represent 50e(-) clusters with a coordinated 8e(-) donor, [tmbp](2-). The HOMO and LUMO of 1 and 2 possess a predominant contribution from different pi*(tmbp) orbitals, implying that the lowest energy excited state possesses a significant intraligand character. This is in agreement with the photostability of these clusters. DFT calculations also predict the experimentally observed structure of 1 to be the most stable one in a series of several plausible structural isomers. Stepwise two-electron electrochemical reduction of 1 and 2 results in dissociation of CO and PPh(3), respectively, and formation of the [Os(3)(CO)(9)(tmbp)](2-) ion. The initially produced radical anions of the parent clusters, in which the odd electron is predominantly localized on the tmbp ligand, are sufficiently stable at low temperatures and can be observed with IR spectroelectrochemistry. The electron-deficiency of the cluster core in 1 permits facile electrocatalytic substitution of a CO ligand by tertiary phosphane and phosphite donors.  相似文献   
26.
Four decomposition procedures frequently used for biological material (dry ashing, open wet digestion, wet digestion in a teflon bomb and low-temperature ashing) are optimized for the conversion of biological samples to conducting electrodes suitable for multi-element trace determinations by spark-source mass spectrometry or emission spectrometry. The optimized procedures are evaluated with respect to contamination, retention and preconcentration of the trace elements, homogeneity of the electrodes and precision of the final results. Both dry-ashing methods are prone to losses by volatilization; simple dry ashing suffers from contamination problems during electrode preparation. Wet digestion gives better precision; digestion with nitric/sulfuric acids in an open flask is the method of choice for most elements being simpler and giving lower blanks than the bomb method.  相似文献   
27.
The electronic absorption spectra, luminescence spectra and lifetimes (in MeCN at room temperature and in frozen n-C3H7CN at 77 K), and electrochemical potentials (in MeCN) of the novel dinuclear [(tpy)Ru(3)Os(tpy)]4+ and trinuclear [(tpy)Ru(3)Os(3)Ru(tpy)]6- complexes (3 = 2,5-bis(2,2':6',2'-terpyridin-4-yl)thiophene) have been obtained and are compared with those of model mononuclear complexes and homometallic [(tpy)Ru(3)Ru(tpy)]4+, [(tpy)Os(3)Os(tpy)]4+ and [(tpy)Ru(3)Ru(3)Ru(tpy)]6+ Complexes. The bridging ligand 3 is nearly planar in the complexes, as seen from a preliminary X-ray determination of [(tpy)Ru(3)Ru(tpy)][PF6]4, and confers a high degree of rigidity upon the polynuclear species. The trinuclear species are rod-shaped with a distance of about 3 nm between the terminal metal centres. For the polynuclear complexes, the spectroscopic and electrochemical data are in accord with a significant intermetal interaction. All of the complexes are luminescent (phi in the range 10(-4)-10(-2) and tau in the range 6-340 ns, at room temperature), and ruthenium- or osmium-based luminescence properties can be identified. Due to the excited state properties of the various components and to the geometric and electronic properties of the bridge, Ru --> Os directional transfer of excitation energy takes place in the complexes [(tpy)Ru(3)Os(tpy)]4+ (end-to-end) and [(tpy)Ru(3)Os(3)Ru(tpy)]6+ (periphery-to-centre). With respect to the homometallic case, for [(tpy)Ru(3)Os(3)Ru(tpy)]6+ excitation trapping at the central position is accompanied by a fivefold enhancement of luminescence intensity.  相似文献   
28.
When oppositely charged polyelectrolytes are mixed in water, attraction between oppositely charged groups may lead to the formation of polyelectrolyte complexes (associative phase separation, complex coacervation, interpolymer complexes). Theory is presented to describe the electrostatic free energy change when ionizable (annealed) (macro-)molecules form a macroscopic polyelectrolyte complex. The electrostatic free energy includes an electric term as well as a chemical term that is related to the dissociation of the ionic groups in the polymer. An example calculation for complexation of polyacid with polybase uses a cylindrical diffuse double layer model for free polymer in solution and electroneutrality within the complex and calculates the free energy of the system when the polymer is in solution or in a polyelectrolyte complex. Combined with a term for the nonelectrostatic free energy change upon complexation, a theoretical stability diagram is constructed that relates pH, salt concentration, and mixing ratio, which is in qualitative agreement with an experimental diagram obtained by Bungenberg de Jong (1949) for complex coacervation of arabic gum and gelatin. The theory furthermore explains the increased tendency toward phase separation when the polymer becomes more strongly charged and suggests that complexation of polyacid or polybase with zwitterionic polymer (e.g., protein) of the same charge sign (at the "wrong side" of the iso-electric point) may be due (in part) to an induced charge reversal of the protein.  相似文献   
29.
The photocontrol of anthocyanin synthesis in dark-grown seedlings of tomato (Lycopersicon esculentum Mill.) has been studied in an aurea (au) mutant which is deficient in the labile type of phytochrome, a high pigment (hp) mutant which has the wild-type level of phytochrome and the double mutant au/hp , as well as the wild type. The hp mutant demonstrates phytochrome control of anthocyanin synthesis in response to a single red light (RL) pulse, whereas there is no measurable response in the wild type and au mutant. After pretreatment with 12 h blue light (BL) the phytochrome regulation of anthocyanin synthesis is 10-fold higher in the hp mutant than in the wild type, whilst no anthocyanin is detectable in the au mutant, thus suggesting that it is the labile pool of phytochrome which regulates anthocyanin synthesis. The au/hp double mutant exhibits a small (3% of that in the hp mutant) RL/far-red light (FR)-reversible regulation of anthocyanin synthesis following a BL pretreatment. It is proposed that the hp mutant is hypersensitive to the FR-absorbing form of phytochrome (Pfr) and that this (hypersensitivity) establishes response to the low level of Pfl. (below detection limits in phytochrome assays) in the au/hp double mutant.  相似文献   
30.
Pectins are dietary fibers with different structural characteristics. Specific pectin structures can influence the gastrointestinal immune barrier by directly interacting with immune cells or by impacting the intestinal microbiota. The impact of pectin strongly depends on the specific structural characteristics of pectin; for example, the degree of methyl-esterification, acetylation and rhamnogalacturonan I or rhamnogalacturonan II neutral side chains. Here, we review the interactions of specific pectin structures with the gastrointestinal immune barrier. The effects of pectin include strengthening the mucus layer, enhancing epithelial integrity, and activating or inhibiting dendritic cell and macrophage responses. The direct interaction of pectins with the gastrointestinal immune barrier may be governed through pattern recognition receptors, such as Toll-like receptors 2 and 4 or Galectin-3. In addition, specific pectins can stimulate the diversity and abundance of beneficial microbial communities. Furthermore, the gastrointestinal immune barrier may be enhanced by short-chain fatty acids. Moreover, pectins can enhance the intestinal immune barrier by favoring the adhesion of commensal bacteria and inhibiting the adhesion of pathogens to epithelial cells. Current data illustrate that pectin may be a powerful dietary fiber to manage and prevent several inflammatory conditions, but additional human studies with pectin molecules with well-defined structures are urgently needed.Subject terms: Mucosal immunology, Translational immunology  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号