首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   718篇
  免费   200篇
  国内免费   229篇
化学   479篇
晶体学   21篇
力学   89篇
综合类   52篇
数学   105篇
物理学   401篇
  2024年   9篇
  2023年   10篇
  2022年   30篇
  2021年   25篇
  2020年   29篇
  2019年   26篇
  2018年   24篇
  2017年   30篇
  2016年   30篇
  2015年   27篇
  2014年   40篇
  2013年   53篇
  2012年   58篇
  2011年   69篇
  2010年   79篇
  2009年   62篇
  2008年   62篇
  2007年   53篇
  2006年   59篇
  2005年   52篇
  2004年   48篇
  2003年   38篇
  2002年   26篇
  2001年   44篇
  2000年   41篇
  1999年   14篇
  1998年   5篇
  1997年   10篇
  1996年   7篇
  1995年   10篇
  1994年   11篇
  1993年   13篇
  1992年   7篇
  1991年   6篇
  1990年   5篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1966年   2篇
  1965年   1篇
  1959年   1篇
  1958年   1篇
排序方式: 共有1147条查询结果,搜索用时 15 毫秒
991.
Cu/WO3-TiO2光催化剂上丙烯和二氧化碳合成MAA反应性能   总被引:1,自引:0,他引:1  
研究了Cu/WO3-TiO2对CO2和C3H6的吸附特性和光催化性能.结果表明,在Cu/WO3-TiO2催化剂表面存在金属位Cu,Lewis酸位W6+和Ti4+以及Lewis碱位W-O-Ti的桥氧和WO的端氧三类活性中心;在金属位Cu和Lewis酸位Ti4+(或W6+)的协同作用下,CO2形成活性较高的卧式吸附态Cu-(CO)-O→Ti4+(或W6+),C3H6的β-H和β-C分别吸附在Lewis碱位WO与金属位Cu上,形成Cu-(CH2)C(CH3)-H→OW吸附态;Cu/WO3-TiO2催化剂吸收阈值蓝移和光吸收量的提高均有利于其催化活性的提高,担载质量分数为10%的WO3光催化剂的催化活性优于其它含量的催化剂,光量子效率最高(19.7%);在383K,0.1MPa,空速200h-1和125W紫外灯辐照下,C3H6转化率为7.4%,甲基丙烯酸(MAA)的选择性超过95%.根据实验结果提出了光促表面催化合成反应的机理.  相似文献   
992.
山柰酚甲基化衍生物具有抗炎、抗动脉粥样硬化以及诱导脂肪细胞凋亡等多种生物活性,但植物含量较少.以资源丰富的山柰酚为原料,经过羟基的苄基保护、O-甲基化和催化氢化三步反应,以79%的总收率合成了5-O-甲基山柰酚.用高分辨质谱、红外光谱以及核磁共振氢谱、碳谱和二维HMBC谱,对所合成化合物的结构进行了确证.以5-O-甲基...  相似文献   
993.
采用强流脉冲离子束(High-intensitypulsedionbeam,HIPIB)烧蚀技术在Si(100)基体上沉积类金刚石(Diamond-likecarbon,DLC)薄膜,衬底温度的变化范围为298~673K.利用Raman光谱和X射线光电子谱(XPS)对DLC薄膜的化学结合状态与衬底温度之间关系进行研究.薄膜XPS的C1s谱的解谱分析得出薄膜中含有sp3C(结合能为285.5eV)和sp2C(结合能为284.7eV)成分,根据解谱结果评价薄膜中sp3C含量.根据XPS分析可知,衬底温度低于473K时,sp3C的含量大约为40%左右;随着沉积薄膜时衬底温度的提高,sp3C的含量降低,由298K时的42.5%降到673K时的8.1%,从573K开始发生sp3C向sp2C转变.Raman光谱表明,随着衬底温度的提高,Raman谱中G峰的峰位靠近石墨峰位,G峰的半峰宽降低,D峰与G峰的强度比ID/IG增大,说明薄膜中的sp3C的含量随衬底温度增加而减少.  相似文献   
994.
HTPB与Al不同晶面结合能和力学性能的分子动力学模拟   总被引:3,自引:0,他引:3  
采用分子力学(MM)和分子动力学(MD)方法, 在250、300、350、400、450 K, 对固体推进剂端羟基聚丁二烯(HTPB)和铝晶胞不同晶面结构所组成的层模型在COMPASS力场下, 进行模拟计算, 求得结合能和静态力学性能(弹性系数、模量和泊松比). 模拟结果表明, 在400 K时HTPB与Al(011)面的结合能最大, 从综合力学性能优劣上看, 各个面从优到劣的排序为(011)>(221)>(001), HTPB与Al的结合能与力学性能具有对应关系, 结合能大的力学性能优异, 结合能小的力学性能较差.  相似文献   
995.
利用紫外光谱方法测定了维生素A及其乙酸酯在不同胶束水溶液中的衰变速率常数和衰变活化参数. 数据显示, 维生素A及其乙酸酯在阴离子胶束溶液SDS中的衰变速度要远大于在阳离子胶束溶液CTAB和中性胶束溶液TX-100中的衰变速度. 机理分析表明, 维生素A及其乙酸酯在水溶液中的衰变是经过先质子化, 再脱去一分子水或乙酸生成碳正离子中间体, 碳正离子再脱去质子, 经重排后得到最终产物脱水维生素A.  相似文献   
996.
研究了一系列具有不同链段长度和组成的聚4-乙烯基吡啶-聚苯乙烯-聚4-乙烯基吡啶多嵌段共聚物(P4VP-b-PS-b-P4VP)n在其选择性溶剂甲苯和pH<3的水中的胶束化过程,主要研究了多嵌段共聚物链段长度、溶液浓度和溶剂对其胶束形态的影响.透射电镜和原子力显微镜结果表明随着P4VP段链的相对增长,多嵌段共聚物在甲苯中的胶束形态由蠕虫链状向短棒状到球状胶束变化,而其在pH<3的水溶液中均形成球形胶束.由于特殊的链结构,聚合物的浓度对(P4VP-b-PS-b-P4VP)n多嵌段共聚物的胶束行为和胶束形态有着重要的影响.同时,(P4VP-b-PS-b-P4VP)n多嵌段共聚物分子量分布的多分散性对其在选择性溶剂中的胶束形态也有所影响.  相似文献   
997.
采用冷冻干燥法制备了经Cu修饰(10%)的Fe2O3/Al2O3氧载体。利用热重分析仪分别在850、900和950 ℃等温环境下,使氧载体交替接触还原气体和氧化气体,来模拟氧载体在化学链燃烧中的循环过程。结果表明,经Cu修饰的Fe2O3/Al2O3氧载体在850和900 ℃下的等温循环过程中反应性能都很稳定,在950 ℃时的循环反应前期有微量烧结,但在循环后期反应性能也很稳定。随着反应温度的升高,氧载体氧化速率增大,还原速率和载氧率先减小后增大。与未经修饰的Fe2O3/Al2O3氧载体相比较,在900 ℃下作等温循环实验,经Cu修饰的Fe2O3/Al2O3氧载体具有较高的载氧能力和还原速率,但氧化速率较低;两者都具有较好的循环稳定性。  相似文献   
998.
以LiOH与5(2甲基丙烯酰乙氧基甲基)8羟基喹啉反应合成8羟基喹啉锂(Liq)配合物单体,并与甲基丙烯酸甲酯共聚合成含有高分化的8羟基喹啉锂.1HNMR、TGA、元素分析确定了单体的组成为Li(C9H5NO)CH2OCH2CH2OOCC(CH3)CH2·H2O.与聚甲基丙烯酸甲酯比较,共聚物热稳定性高.Liq含量<15wt%时共聚物能够溶于普通溶剂.紫外吸收、激发光谱、光致(PL)发光谱说明单体和共聚物的发光来自于Liq基团.单体和共聚物发蓝光.同时对共聚物的二甲基甲酰胺、二甲亚砜和四氯乙烷溶液制备的薄膜的光致发光光谱进行了比较,证明溶剂影响Liq基团上共轭电子的离域程度,对发光光谱有调节作用.  相似文献   
999.
Zn-Al水滑石催化碳酸二甲酯与苯酚酯交换反应的研究   总被引:7,自引:0,他引:7  
用共沉淀法制备了Zn-Al水滑石,并用于多相催化酯交换合成碳酸二苯酯的反应.研究了不同n(Zn)/n(Al)比的水滑石及其焙烧产物等对酯交换反应的催化活性.结果表明,Zn-Al水滑石催化剂对该反应的催化活性和选择性很高,当n(Zn)/n(Al)=3时,在150~180℃,n(PhOH)/n(DMC)=2,催化剂用量为反应物总质量的1.5%,在反应时间为12h的条件下,DMC的转化率达到55.9%,DPC和MPC的收率分别为25.3%和27.0%,酯交换产物的选择性达到93.6%.利用XRD,TG-DTA和TEM等手段对催化剂进行了表征.  相似文献   
1000.
梅萌  黄晓佳 《色谱》2016,34(12):1168-1175
作为新型的样品前处理技术,固相微萃取由于具有操作简便、使用灵活、样品用量少、环境友好以及便于与分析仪器联用等优点而受到人们的广泛青睐。多孔整体材料具有通透性好、传质速度快、制备简单和易于改性等优点,目前被广泛用于包括样品前处理在内的诸多领域。文章结合作者的研究工作,对近几年整体材料在固相微萃取中的应用研究进行综述,并对其发展方向进行了展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号