We discuss the experimental and theoretical aspects of absorption spectroscopy of cold atomic hydrogen gas in a magnetostatic trap using a pulsed narrow-band source (bandwidth 100 MHz) at the Lyman- wavelength (121.6 nm). A careful analysis of the measured absorption spectra enables us to determine non-destructively the temperature and the density of the trapped gas. The development of this diagnostic technique is important for future attempts to reach Bose-Einstein condensation in trapped atomic hydrogen. 相似文献
We present a study of the spectral linewidth of collimated blue light (CBL) that results from wave mixing of low-power continuous-wave laser radiation at 780 and 776 nm and an internally generated mid-IR field at 5.23 μm in Rb vapour. Using a high-finesse Fabry–Perot interferometer, the spectral width of the CBL is found to be <1.3 MHz for a wide range of experimental conditions. We demonstrate using frequency-modulated laser light that the CBL linewidth is mainly limited by the temporal coherence of the applied laser fields rather than the atom–light interaction itself. The obtained result allows the same 1.3 MHz upper limit to be set for the linewidth of the collimated mid-IR radiation at 5.23 μm, which has not been directly detected. 相似文献
We report the observation of lambda-configuration electromagnetically induced transparency as well as optical pumping in rubidium-filled kagome-structure hollow-coated-core photonic crystal fiber. We show that a polydimethylsiloxane coating of the fiber core reduces the linewidth of the transparency below that which could be expected for an uncoated fiber. The measured 6 MHz linewidth was dominated by optical broadening. 相似文献
Nanoscale chemical analysis of functional polymer systems by electron microscopy, to gain access into degradation processes during the materials life cycle, is still a formidable challenge due to their beam sensitivity. Here a systematic study on the different stages of degradation in a P3HT-PCBM organic photovoltaic (OPV) model system is presented. To this end pristine samples, samples with (reversibly) physisorbed oxygen and water and samples with (irreversibly) chemisorbed oxygen and water are imaged utilizing the full capabilities of cryogenic STEM-EELS. It is found that oxygen and water are largely physisorbed in this system leading to significant effects on the band structure, especially for PCBM. Quantification proves that degradation concomitantly decreases the amount of CC bonds and increases the amount of C O C bonds in the sample. Finally, it is shown that with a pulsed electron beam utilizing a microwave cavity, beam damage can be significantly reduced which likely extends the possibilities for such studies in future. 相似文献
We have constructed a compact and robust optical frequency standard based around iodine vapor loaded into the core of a hollow-core photonic crystal fiber (HC-PCF). A 532 nm laser was frequency locked to one hyperfine component of the R(56) 32-0 (127)I(2) transition using modulation transfer spectroscopy. The stabilized laser demonstrated a frequency stability of 2.3×10(-12) at 1 s, almost an order of magnitude better than previously reported for a laser stabilized to a gas-filled HC-PCF. This limit is set by the shot noise in the detection system. We present a discussion of the current limitations to the performance and a route to improve the performance by more than an order of magnitude. 相似文献
We propose a technique for producing electron bunches that has the potential for advancing the state-of-the-art in brightness of pulsed electron sources by orders of magnitude. In addition, this method leads to femtosecond bunch lengths without the use of ultrafast lasers or magnetic compression. The electron source we propose is an ultracold plasma with electron temperatures down to 10 K, which can be fashioned from a cloud of laser-cooled atoms by photoionization just above threshold. Here we present results of simulations in a realistic setting, showing that an ultracold plasma has an enormous potential as a bright electron source. 相似文献
In recent years laser light has been used to control the motion of electron waves. Electrons can now be diffracted by standing waves of light. Laser light in the vicinity of nanostructures is used to affect free electrons, for example, femto‐second and atto‐second laser‐induced electrons are emitted from nanotips delivering coherent fast electron sources. Optical control of dispersion of the emitted electron waves, and optically controlled femto‐second switches for ultrafast electron detection are proposed. The first steps towards electron accelerators and matter optics on‐a‐chip are now being taken. New research fields are driven by these new technologies. One example is the optical generation of electron pulses on‐demand and quantum degenerate pulses. Another is the emerging development of interaction free electron microscopy. This review will focus on the field of free electron quantum optics with technologies at the interplay of lasers, electron matter waves, and nanostructures. Questions that motivate their development will also be addressed.
We use a new technique to disseminate microwave reference signals along ordinary optical fiber. The fractional frequency resolution of a link of 86 km in length is 10(-17) for a one day integration time, a resolution higher than the stability of the best microwave or optical clocks. We use the link to compare the microwave reference and a CO2/OsO4 frequency standard that stabilizes a femtosecond laser frequency comb. This demonstrates a resolution of 3 x 10(-14) at 1 s. An upper value of the instability introduced by the femtosecond laser-based synthesizer is estimated as 1 x 10(-14) at 1 s. 相似文献