首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1409篇
  免费   79篇
  国内免费   8篇
化学   906篇
晶体学   16篇
力学   36篇
综合类   1篇
数学   217篇
物理学   320篇
  2023年   35篇
  2022年   31篇
  2021年   49篇
  2020年   43篇
  2019年   42篇
  2018年   41篇
  2017年   20篇
  2016年   44篇
  2015年   45篇
  2014年   44篇
  2013年   74篇
  2012年   73篇
  2011年   117篇
  2010年   44篇
  2009年   57篇
  2008年   74篇
  2007年   69篇
  2006年   56篇
  2005年   45篇
  2004年   50篇
  2003年   26篇
  2002年   27篇
  2001年   17篇
  2000年   25篇
  1999年   14篇
  1998年   12篇
  1997年   17篇
  1996年   16篇
  1995年   10篇
  1994年   10篇
  1993年   25篇
  1992年   7篇
  1991年   14篇
  1990年   10篇
  1989年   7篇
  1988年   10篇
  1987年   12篇
  1986年   8篇
  1985年   9篇
  1984年   17篇
  1983年   9篇
  1982年   10篇
  1981年   13篇
  1980年   9篇
  1979年   9篇
  1978年   14篇
  1977年   9篇
  1976年   8篇
  1974年   7篇
  1973年   6篇
排序方式: 共有1496条查询结果,搜索用时 15 毫秒
121.
The linear viscoelastic behavior of a soda-lime-silica glass under low frequency shear loading is investigated in the glass transition range. Using the time-temperature superposition technique, the master curves of the shear dynamic relaxation moduli are obtained at a reference temperature of 566°C. A method to determine the viscoelastic constants from dynamic relaxation moduli is proposed. However, some viscoelastic constants cannot be directly measured from the experimental curves and others cannot be precisely obtained due to non-linearity effects at very low frequencies. The generalized Maxwell model is investigated from the experimental dynamic moduli without fixing the viscoelastic constants. A set of parameters is shown to be in good agreement with the experimental dynamic relaxation moduli, but does not give the correct values of the viscoelastic constants of the investigated glass. The soda-lime-silica glass exhibits a non-linear viscoelastic behavior at very low stress level which is usually observed for organic glasses. This non-linear behavior is questioned.  相似文献   
122.
123.
We consider a semilinear wave equation with nonlinear damping in the whole space . Local‐in‐time existence and uniqueness results are obtained in the class of Bessel‐potential spaces . Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
124.
The vocal cords play an important role on voice production. Air coming from the lungs is forced through the narrow space between the two vocal cords that are set in motion in a frequency that is governed by the tension of the attached muscles. The motion of the vocal cords changes the type of flow, that comes from the lungs, to pulses of air, and as the flow passes through the oral and nasal cavities, it is amplified and further modified until it is radiated from the mouth. This complex process can be modeled by a system of integral-differential equations. This paper considers two mechanical models previously used for explaining the dynamics of the vocal cords. It shows that the level of naturalness of the sound generated by these models is rather poor, and it proposes temporal variations of the parameters of the models to increase such level. Examples of synthetic vowels and diphthongs are given to assess the models. In general, the results show that, although the system of voice production is complex, we can achieve satisfactory results with relatively simple low-dimensional models, by suitable temporal variations of the aerodynamic parameters.  相似文献   
125.
126.
127.
We present results of molecular dynamics simulations of fully hydrated DMPC bilayers performed on graphics processing units (GPUs) using current state-of-the-art non-polarizable force fields and a local GPU-enabled molecular dynamics code named FEN ZI. We treat the conditionally convergent electrostatic interaction energy exactly using the particle mesh Ewald method (PME) for solution of Poisson's Equation for the electrostatic potential under periodic boundary conditions. We discuss elements of our implementation of the PME algorithm on GPUs as well as pertinent performance issues. We proceed to show results of simulations of extended lipid bilayer systems using our program, FEN ZI. We performed simulations of DMPC bilayer systems consisting of 17,004, 68,484, and 273,936 atoms in explicit solvent. We present bilayer structural properties (atomic number densities, electron density profiles), deuterium order parameters (S(CD)), electrostatic properties (dipole potential, water dipole moments), and orientational properties of water. Predicted properties demonstrate excellent agreement with experiment and previous all-atom molecular dynamics simulations. We observe no statistically significant differences in calculated structural or electrostatic properties for different system sizes, suggesting the small bilayer simulations (less than 100 lipid molecules) provide equivalent representation of structural and electrostatic properties associated with significantly larger systems (over 1000 lipid molecules). We stress that the three system size representations will have differences in other properties such as surface capillary wave dynamics or surface tension related effects that are not probed in the current study. The latter properties are inherently dependent on system size. This contribution suggests the suitability of applying emerging GPU technologies to studies of an important class of biological environments, that of lipid bilayers and their associated integral membrane proteins. We envision that this technology will push the boundaries of fully atomic-resolution modeling of these biological systems, thus enabling unprecedented exploration of meso-scale phenomena (mechanisms, kinetics, energetics) with atomic detail at commodity hardware prices.  相似文献   
128.
Stimuli-responsive electrospun nanofibers are gaining considerable attention as highly versatile tools which offer great potential in the biomedical field. In this critical review, an overview is given on recent advances made in the development and application of stimuli-responsive fibers. The specific features of these electrospun fibers are highlighted and discussed in view of the properties required for the diverse applications. Furthermore, several novel biomedical applications are discussed and the respective advantages and shortcomings inherent to stimuli-responsive electrospun fibers are addressed (136 references).  相似文献   
129.
The growth of hydrogenated amorphous carbons (a-C:H) produced by continuous or pulsed discharges of acetylene (C(2)H(2)) in an unbalanced magnetron setup was investigated. At 5 × 10(-3) Torr, only smooth films are obtained, whereas at 5 × 10(-1) Torr using a pulsed discharge some microtextured films are formed if the duty cycle is low. The morphology of these microtextured films consists of nanoparticles, filamentary particles, and particular agglomerates ("microflowers"). This paper presents a study of acetylene gas phase polymerization by mass spectrometry, and a detailed analysis of bulk structure of films by combining three techniques which include IR spectroscopy, Raman spectroscopy, and laser desorption/ionization Fourier transform mass spectrometry (LDI-FTMS). Finally, based on the study of gas phase and film structure, we propose a model for the growth of both smooth and microtextured films.  相似文献   
130.
The influence of surface roughness on surfactant adsorption was studied using a quartz crystal microbalance with dissipation (QCM-D). The sensors employed had root-mean-square (R) roughness values of 2.3, 3.1, and 5.8 nm, corresponding to fractal-calculated surface area ratios (actual/nominal) of 1.13, 1.73, and 2.53, respectively. Adsorption isotherms measured at 25 °C showed that adsorbed mass of cetyltrimethylammonium bromide per unit of actual surface area below 0.8 cmc, or above 1.2 cmc, decreases as the surface roughness increases. At the cmc, both the measured adsorbed amount and the measured dissipation increased dramatically on the rougher surfaces. These results are consistent with the presence of impurities, suggesting that roughness exacerbates well-known phenomena reported in the literature of peak impurity-related adsorption at the cmc. The magnitude of the increase, especially in dissipation, suggests that changes in adsorbed amount may not be the only reason for the observed results, as aggregates at the cmc on rougher surfaces are more flexible and likely contain larger amounts of solvent. Differences in adsorption kinetics were also found as a function of surface roughness, with data showing a second, slower adsorption rate after rapid initial adsorption. A two-rate Langmuir model was used to further examine this effect. Although adsorption completes faster on the smoother surfaces, initial adsorption at zero surface coverage is faster on the rougher surfaces, suggesting the presence of more high-energy sites on the rougher surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号