首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4422篇
  免费   139篇
  国内免费   23篇
化学   2567篇
晶体学   21篇
力学   178篇
数学   825篇
物理学   993篇
  2023年   37篇
  2022年   81篇
  2021年   143篇
  2020年   91篇
  2019年   102篇
  2018年   81篇
  2017年   63篇
  2016年   150篇
  2015年   142篇
  2014年   155篇
  2013年   258篇
  2012年   293篇
  2011年   322篇
  2010年   203篇
  2009年   166篇
  2008年   274篇
  2007年   234篇
  2006年   233篇
  2005年   237篇
  2004年   171篇
  2003年   152篇
  2002年   131篇
  2001年   82篇
  2000年   70篇
  1999年   48篇
  1998年   42篇
  1997年   53篇
  1996年   43篇
  1995年   37篇
  1994年   36篇
  1993年   34篇
  1992年   19篇
  1991年   9篇
  1990年   23篇
  1989年   13篇
  1988年   9篇
  1986年   16篇
  1985年   31篇
  1984年   37篇
  1983年   20篇
  1982年   19篇
  1981年   18篇
  1980年   22篇
  1979年   19篇
  1978年   15篇
  1977年   18篇
  1976年   17篇
  1974年   11篇
  1973年   13篇
  1972年   8篇
排序方式: 共有4584条查询结果,搜索用时 15 毫秒
91.
Summary Un classico teorema di G. Gherardelli afferma che una curvaC P 3 è intersezionè completa se e soltanto se è proiettivamente normale e sottocanonica. Qui si prova che, seC e a- sottocanonica ed inoltre le superficie di grado 1 + (a/2) (a pari) ovvero (a + l)/2 o (a + 3)/2 o (a + 5)/2 (a dispari) tagliano suC serie complete, alloraC è intersezione completa. Si determina inoltre un bound d funzione di a tale che, seC è a-sottocanonica e di grado d d, alloraC è intersezione completa se e soltanto se le superficie di grado a tagliano suC una serie completa. Si discutono poi numerosi esempi di curve sottocanoniche non intersezioni complete.Paper written while P. Valabrega was member of C.N.R. (G.N.A.S.G.A.) and both authors were supported by M.P.I. funds.  相似文献   
92.
Hydrogenases catalyze the reversible oxidation of dihydrogen to protons and electrons. The structures of two Fe-only hydrogenases have been recently reported [Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853-1858. Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, E. C.; Fontecilla-Camps, J. C. Structure 1999, 7, 13-23], showing that the likely site of dihydrogen activation is the so-called [2Fe](H) cluster, where each Fe ion is coordinated by CO and CN(-) ligands and the two metals are bridged by a chelating S-X(3)-S ligand. Moreover, the presence of a water molecule coordinated to the distal Fe2 center suggested that the Fe2 atom could be a suitable site for binding and activation of H(2). In this contribution, we report a density functional theory investigation of the structural and electronic properties of complexes derived from the [(CO)(CH(3)S)(CN)Fe(II)(mu-PDT)Fe(II)(CO)(2)(CN)](-1) species, which is related to the [2Fe](H) cluster observed in Fe-only hydrogenases. Our results show that the structure of the [2Fe](H) cluster observed in the enzyme does not correspond to a stable form of the isolated cluster, in the absence of the protein. As a consequence, the reactivity of [(CO)(CH(3)S)(CN)Fe(II)(mu-PDT)Fe(II)(CO)(2)(CN)](-1) derivatives in solution may be expected to be quite different from that of the active site of Fe-only hydrogenases. In fact, the most favorable path for H(2) activation involves the two metal atoms and one of the bridging S atoms and is associated with a very low activation energy (5.3 kcal mol(-1)). The relevance of these observations for the catalytic properties of Fe-only hydrogenases is discussed in light of available experimental and theoretical data.  相似文献   
93.
Density functional theory has been used to investigate complexes related to the [2Fe](H) subcluster of [Fe]-hydrogenases. In particular, the effects on structural and electronic properties of redox state and ligands with different sigma-donor pi-acceptor character, which replace the cysteine residue coordinated to the [2Fe](H) subcluster in the enzyme, have been investigated. Results show that the structural and electronic properties of fully reduced Fe(I)Fe(I) complexes are strongly affected by the nature of the ligand L, and in particular, a progressive rotation of the Fe(d)(CO)(2)(CN) group, with a CO ligand moving from a terminal to a semibridged position, is observed going from the softest to the hardest ligand. For the partially oxidized Fe(I)Fe(II) complexes, two isomers of similar stability, characterized either by a CO ligand in a terminal or bridged position, have been observed. The switching between the two forms is associated with a spin and charge transfer between the two iron atoms, a feature that could be relevant in the catalytic mechanism of dihydrogen activation. The structure of the fully oxidized Fe(II)Fe(II) models is extremely dependent on the nature of the L ligand; one CO group coordinated to Fe(d) switches from terminal to bridging position going from complexes characterized by neutral to anionic L ligands.  相似文献   
94.
ZrO2-supported La, Co oxide catalysts with different La, Co loading (2, 6, 8, 12 and 16 wt.% as LaCoO3) were prepared by impregnation of tetragonal ZrO2 with equimolar amounts of La and Co citrate precursors and calcination at 1073 K. The catalysts were characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and BET specific surface area determination. Catalytic CO oxidation was performed at 298–800 K. XRD revealed the presence of tetragonal zirconia with traces of the monoclinic phase. LaCoO3 perovskite was also detected for loading higher than 6%. XAS experiments suggested that at high loading LaCoO3 and Co3O4 were formed, while at low loading, La, Co oxide species interacting with support, and hard to be structurally defined, prevailed. The catalysis study evidenced that the catalytic activity was due to segregated and highly dispersed cobalt oxide species.  相似文献   
95.
New [M(R(2)pipdt)(2)](BF(4))(2) salts [R(2)pipdt = N,N'-dialkyl-piperazine-2,3-dithione; M = Pd(II), R = Me and M = Pt(II), R = Me, Et, Pr(i)] bearing redox-active cationic dithiolene complexes have been prepared and characterized. These cations react with the redox-active [M(mnt)(2)](2-) [M = Pd(II), Pt(II); mnt = maleonitrile-2,3-dithiolate] anionic dithiolenes to form salts describable as ion pair charge-transfer complexes. X-ray crystallographic studies have shown that [M(Me(2)pipdt)(2)][M(mnt)(2)] complexes, with M = Pd(II) and Pt(II), are isomorphous. Crystal data of the Pt salt (3a): triclinic, Ponemacr; (No. 2); Z = 1; T = 293(2) K; a = 6.784(7) A, b = 8.460(6) A, c = 13.510(5) A, alpha = 100.63(2) degrees, beta = 104.04(2) degrees, gamma = 96.90(2) degrees; R1 = 0.0691 [wR2 = 0.2187 (all data)]. Structural data show that approximately square-planar [Pt(Me(2)pipdt)(2)] dications and regular square-planar [Pt(mnt)(2)] dianions form an infinite anion-cation one-dimensional stack along axis a with a Pt...Pt a/2 distance of 3.392 A and a Pt...Pt...Pt angle of 180 degrees. Anions and cations arrange themselves face-to-face so as to take on a staggered arrangement. These salts exhibit strong absorptions in the visible-near-infrared region assigned to ion pair charge-transfer transitions. A relation between the optical and thermal electron transfer in the solid state is obtained using a "Marcus-Hush model", and a solid-state electrical conductivity in agreement with expectations is observed. Vibrational spectroscopy is in agreement with the existence of charge-transfer interactions between the cationic and anionic components of the salts.  相似文献   
96.
The correlation between β2‐, β3‐, and β2,3‐amino acid‐residue configuration and stability of helix and hairpin‐turn secondary structures of peptides consisting of homologated proteinogenic amino acids is analyzed (Figs. 1–3). To test the power of Zn2+ ions in fortifying and/or enforcing secondary structures of β‐peptides, a β‐decapeptide, 1 , four β‐octapeptides, 2 – 5 , and a β‐hexadecapeptide, 10 , have been devised and synthesized. The design was such that the peptides would a) fold to a 14‐helix ( 1 and 3 ) or a hairpin turn ( 2 and 4 ), or form neither of these two secondary structures (i.e., 5 ), and b) carry the side chains of cysteine and histidine in positions, which will allow Zn2+ ions to use their extraordinary affinity for RS? and the imidazole N‐atoms for stabilizing or destabilizing the intrinsic secondary structures of the peptides. The β‐hexadecapeptide 10 was designed to a) fold to a turn, to which a 14‐helical structure is attached through a β‐dipeptide spacer, and b) contain two cysteine and two histidine side chains for Zn complexation, in order to possibly mimic a Zn‐finger motif. While CD spectra (Figs. 6–8 and 17) and ESI mass spectra (Figs. 9 and 18) are compatible with the expected effects of Zn2+ ions in all cases, it was shown by detailed NMR analyses of three of the peptides, i.e., 2, 3, 5 , in the absence and presence of ZnCl2, that i) β‐peptide 2 forms a hairpin turn in H2O, even without Zn complexation to the terminal β3hHis and β3hCys side chains (Fig. 11), ii) β‐peptide 3 , which is present as a 14‐helix in MeOH, is forced to a hairpin‐turn structure by Zn complexation in H2O (Fig. 12), and iii) β‐peptide 5 is poorly ordered in CD3OH (Fig. 13) and in H2O (Fig. 14), with far‐remote β3hCys and β3hHis residues, and has a distorted turn structure in the presence of Zn2+ ions in H2O, with proximate terminal Cys and His side chains (Fig. 15).  相似文献   
97.
Using structural data from bis(bidentate)diorganotin compounds in the Cambridge Structural Database a potential pathway for trans-cis interconversion is envisaged with nondissociative Sn-donor bonds and retaining metal coordination number 6. C-Sn-C bond angles in the range 180-145° correspond to skewed trapezoid bipyramidal geometry for 6- and 5-membered O,O′ chelates; geometries that resemble the transition state of the trans-cis pathway starts forming at about C-Sn-C 134°. cis-Diorganotins explored in this work have C-Sn-C bond angles in the range 102-110°; it is the statistically favored configuration for diphenyltins. The proposed trans-cis conversion pathway is deduced from a series of geometries associated with decreasing the C-Sn-C bond angle and shows 2 weakly (secondary) bound chelating atoms lengthening their bonds until near the transition state and later strengthening; they end up cis to each other and opposite to the organic groups. Conversely, the other 2 (primary) donors shorten their bonds until the transition state is reached and later lengthen; they end up trans to each other. The entire transformation from trans to cis configuration occurs with relative rotation of 3 bonds.  相似文献   
98.
The surface valence-band densities of states (DOS) of Pt(3)M (M=Ti,V,Cr,Fe,Co,Ni) polycrystalline alloys were investigated with ultraviolet photoemission spectroscopy. Upon annealing the ion-sputter-cleaned alloys at high temperatures, the observed valence-band DOS spectra clearly show the modified electronic structures on the surfaces suggesting the surface segregation of Pt as predicted in thermodynamic models. The measured d-band centers and widths for the annealed alloy surfaces show qualitatively the same trend as predicted by density-functional-theory calculations based on the model of a Pt "skin" on the topmost surface layer and a subsurface layer enriched in the 3d transition metal.  相似文献   
99.
The controlled decomposition of an Ru(0) organometallic precursor dispersed in 1-n-butyl-3-methylimidazolium hexafluorophosphate (BMI.PF(6)), tetrafluoroborate (BMI.BF(4)) or trifluoromethane sulfonate (BMI.CF(3)SO(3)) ionic liquids with H(2) represents a simple and efficient method for the generation of Ru(0) nanoparticles. TEM analysis of these nanoparticles shows the formation of superstructures with diameters of approximately 57 nm that contain dispersed Ru(0) nanoparticles with diameters of 2.6+/-0.4 nm. These nanoparticles dispersed in the ionic liquids are efficient multiphase catalysts for the hydrogenation of alkenes and benzene under mild reaction conditions (4 atm, 75 degrees C). The ternary diagram (benzene/cyclohexene/BMI.PF(6)) indicated a maximum of 1 % cyclohexene concentration in BMI.PF(6), which is attained with 4 % benzene in the ionic phase. This solubility difference in the ionic liquid can be used for the extraction of cyclohexene during benzene hydrogenation by Ru catalysts suspended in BMI.PF(6). Selectivities of up to 39 % in cyclohexene can be attained at very low benzene conversion. Although the maximum yield of 2 % in cyclohexene is too low for technical applications, it represents a rare example of partial hydrogenation of benzene by soluble transition-metal nanoparticles.  相似文献   
100.
Reaction of [(triphos)Re(CO)(2)(OTf)] (1) [triphos = MeC(CH(2)PPh(2))(3); OTf = OSO(2)CF(3)] with P(4)S(3) and P(4)Se(3) yields pairs of coordination isomers, namely, [(triphos)Re(CO)(2)[eta(1)-P(apical)-P(4)X(3)]](+) (X = S, 2; Se, 5) and [(triphos)Re(CO)(2)[eta(1)-P(basal)-P(4)X(3)]](+) (X = S, 3; Se, 6). The latter represent the first examples of the eta(1)-P(basal) coordination achieved by the P(4)X(3) molecular cage. Further reaction of 2/3 and 5/6 mixtures with 1 affords the dinuclear species [[(triphos)Re(CO)(2)](2)[mu,eta(1:1)-P(apical,)P(basal)-P(4)X(3)]](2+) (X = S, 4; Se, 7) in which the unprecedented M-eta(1)-P(basal)/eta(1)-P(apical)-M' bridging coordination of the P(4)X(3) molecule is accomplished. A theoretical analysis of the bonding properties of the two coordination isomers is also presented. The directionality of apical vs basal phosphorus lone pairs is also discussed in terms of MO arguments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号