首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22924篇
  免费   3369篇
  国内免费   2465篇
化学   16122篇
晶体学   276篇
力学   1354篇
综合类   187篇
数学   2297篇
物理学   8522篇
  2024年   67篇
  2023年   423篇
  2022年   739篇
  2021年   835篇
  2020年   849篇
  2019年   834篇
  2018年   711篇
  2017年   736篇
  2016年   1015篇
  2015年   1035篇
  2014年   1171篇
  2013年   1608篇
  2012年   1876篇
  2011年   1994篇
  2010年   1304篇
  2009年   1271篇
  2008年   1467篇
  2007年   1358篇
  2006年   1224篇
  2005年   976篇
  2004年   787篇
  2003年   660篇
  2002年   633篇
  2001年   461篇
  2000年   455篇
  1999年   481篇
  1998年   422篇
  1997年   424篇
  1996年   463篇
  1995年   365篇
  1994年   381篇
  1993年   272篇
  1992年   254篇
  1991年   233篇
  1990年   165篇
  1989年   129篇
  1988年   117篇
  1987年   97篇
  1986年   99篇
  1985年   85篇
  1984年   58篇
  1983年   49篇
  1982年   38篇
  1981年   28篇
  1980年   31篇
  1979年   18篇
  1978年   10篇
  1977年   8篇
  1975年   7篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Microporous carbons afford high surface areas, large pore volumes, and good conductivity, and are fascinating over a wide range of applications. Traditionally synthesized microporous carbon materials usually suffer from some limitations, such as poor accessibility and slow mass transport of molecules due to the micrometer-scale diffusion pathways and space confinement imposed by small pore sizes. Two-dimensional microporous carbon materials, denoted as microporous carbon nanosheets (MCNs), possess nanoscale thickness, which allows fast mass and heat transport along the z axis; thus overcoming the drawbacks of their bulk counterparts. Herein, recent breakthroughs in the synthetic strategies for MCNs are summarized. Three typical methods are discussed in detail with several examples: pyrolysis of organic precursors with 2D units, a templating method that uses wet chemistry, and the molten salt method. Among them, molecular-based assembly of MCNs in the liquid phase shows more controllable morphology, thickness, and pore size distribution. Finally, challenges in this research area are discussed to inspire future explorations.  相似文献   
992.
A series of monodisperse six-armed conjugated starbursts ( Tr1F , Tr2F , and Tr3F ) containing a truxene core and multibranched oligofluorene bridges capped with diphenylamine (DPA) units has been designed, synthesized, and investigated as robust gain media for organic semiconductor lasers (OSLs). The influence of electron-rich DPA end groups on their optoelectronic characteristics has been discussed at length. DPA cappers effectively raise HOMO levels of the starbursts, thus enhancing the hole injection and transport ability. Solution-processed electroluminescence devices based on the resulting six-armed starbursts exhibited efficient deep-blue electroluminescence with clear reduced turn-on voltages (3.2–3.5 V). Moreover, the resulting six-armed molecules showed stabilized electroluminescence and amplified spontaneous emission with low thresholds (27.4–63.9 nJ pulse−1), high net gain coefficients (80.1–101.3 cm−1), and small optical loss (2.6–4.4 cm−1). Distributed feedback OSLs made from Tr3F exhibited a low lasing threshold of 0.31 kW cm−2 (at 465 nm). The results suggest that the construction of truxene-centered six-armed conjugated starbursts with the incorporation of DPA units can effectively enhance EL properties by precisely regulating the HOMO energy levels, and further optimizing their optical gain properties.  相似文献   
993.
The conversion of the alkali-treated intergrowth germanosilicate CIT-13 into the single-crystalline high-silica ECNU-21 (named after East China Normal University) zeolite, with a novel topology and a highly crystalline zeolite framework, has been realized through a creative top-down strategy involving a mild alkaline-induced multistep process consisting of structural degradation and reconstruction. Instead of acid treatment, hydrolysis in aqueous ammonia solution not only readily cleaved the chemically weak Ge(Si)−O−Ge bonds located within the interlayer double four ring (D4R) units of CIT-13, but also cleaved the metastable Si−O−Si bonds therein. This led to extensive removal of the D4R units, and also generated silanol groups on adjacent silica-rich layers, which then condensed to form a novel daughter structure upon calcination. Individual oxygen bridges in the reassembled ECNU-21 replaced the germanium-rich D4R units in CIT-13, thereby eliminating the original intergrowth phenomenon along the b axis. With an ordered crystalline structure of 10-ring (R) channels as well as suitable germanium-related Lewis acid sites, ECNU-21 serves as a stable solid Lewis acid catalyst for the shape-selective hydration of ethylene oxide (EO) to ethylene glycol (EG) at greatly reduced H2O/EO ratios and reaction temperature in comparison with the noncatalytic industrial process.  相似文献   
994.
Molecular or supramolecular level photoluminescence (PL) modulation combining chemical and photonic input/output signals together in an integrated system can provide potential high-density data memorizing and process functions intended for miniaturized devices and machines. Herein, a PL-responsive supramolecular coordination cage has been demonstrated for complex interactions with redox-active guests. PL signals of the cage can be switched and modulated by adding or retracting Fc derivatives or converting TTF into different oxidation states through chemical or photochemical pathways. As a result, reversible or stepwise PL responses are displayed by these host–guest systems because of the occurrence of photoinduced electron-transfer (PET) or fluorescence resonance energy transfer (FREnT) processes, providing unique nanodevice models bearing off/on logic gates or memristor-like sequential memory and Boolean operation functions.  相似文献   
995.
One of the most important endogenous reactive oxygen species, hypochlorous acid (HClO), is involved in numerous pathological and physiological processes. Herein, a near-infrared fluorescence probe (CyHR) was designed and synthesized for ultrafast (within 0.2 s), sensitive (limit of detection=39.44 nm ), and selective response to HClO. The reaction mechanism was systematically analyzed by MS, 1H NMR spectroscopy, HPLC-MS techniques, and theoretical calculations. The results indicated that HClO can be recognized by CyHR, which is based on chlorine–oxygen (Cl−O) bond formation. To the best of our knowledge, this study is the first to find Cl−O bonds among organic aromatic compounds, given that Cl−O bonds are common among inorganics. Through biological experiments, CyHR was successfully applied to image exogenous and endogenous HClO in macrophage cells (RAW 264.7). Thus, CyHR is a promising tool for HClO-related physiological and pathological studies and may provide a means for designing HClO-specific fluorescence probes.  相似文献   
996.
Nonylphenols (NPNs) are persistent endocrine disruptors and their release into the environment is causing increasing concern about their impact on human health. Herein, an ultrasensitive electrochemical immunosensor was developed for the detection of NPNs in the leachates from 61 instant noodle containers (INCs) from 8 countries across Southeast Asia. Gold nanoclusters (AuNCs) were self-assembled with reduced graphene oxide (rGO; polyethylenimine–rGO) and used to modify a glassy carbon electrode (GCE), which showed excellent electrical conductivity. An anti-NPN antibody was then immobilized on the AuNCs and, if it specifically bound NPN, the reduction in conductivity of the GCE was remarkable. The designed immunosensor has a low detection limit (5.25 ng L−1) and high sensitivity for NPNs in the leachates of INCs. Remarkably, the leaching of estrogen-like compounds from different plastics of INCs and the correlation between NPN content and total estrogenic activity were thoroughly investigated. High temperatures caused polyethylene and polystyrene INCs to release more estrogen-like compounds than that of polypropylene INCs; this increased release of NPNs was associated with higher estrogen activity in living cells. These data fill the gap in human and environmental exposure to estrogen-like compounds through INCs.  相似文献   
997.
Tuning fluorescence colour of solid-state materials has become a topic of increasing interest for both fundamental mechanism study and practical applications such as sensors, optical recording and security printing. In this work, a fluorescent colour tuneable molecule BA-C16 is rationally designed and facilely synthesized by attaching flexible long alkyl chains to 2-hydroxybenzophenone azine ( BA ), which shows both aggregation-induced emission (AIE) and excited-state intramolecular proton transfer (ESIPT) characteristics. Compared to BA , the simple introduction of long alkyl chains in BA-C16 leads to an emission wavelength redshift from 542 to 558 nm. This strategy of extending emission wavelength is rarely reported, and is ascribed to the enlarged through-space π-conjugation between interplanar molecules in the aggregate of BA-C16 . Three crystals of BA-C16 are obtained with green, yellowish green and yellow emission. According to characterization by X-ray crystallography, X-ray powder diffraction and differential scanning calorimetry, alkyl chains play an important role in inducing different stacking modes of the three crystals, which further leads to polymorph-dependent fluorescence colour. BA-C16 exhibits tuneable solid-state fluorescence upon vapor fumigation, or annealing based on a transition between a “near-monomer” crystalline state and a “dimer” crystalline state. BA-C16 is further applied for rewritable fluorescence printing tuned by vapor- and thermal-treatment.  相似文献   
998.
As the spacer length in 1,2-dimethylimidazolium-based dications increases beyond a specific point (six methylene units), they fail in structure-directing towards STW zeolites in any synthetic conditions. These dications can instead produce, under fluoride concentrated conditions, either *BEA [in the case of the eight-methylene-unit structure-directing agent (SDA)] or MWW (ten methylene units) zeolites. For any length of the dication, the default zeolite (MTW) is a relatively dense zeolite containing a unidimensional channel, whereas the zeolite demanding most specificity (STW, *BEA or MWW) is more porous, affording a larger concentration of the dication to be occluded. This work provides the first reported fluoride synthesis of pure silica MWW zeolites. Charge balance of the organic dications in this zeolite was achieved by combining “structural” silanolates, regular “connectivity defects” and occluded fluoride. Molecular mechanics calculations showed a perfect fit of the decamethylenebis(dimethylimidazolium) dication in the sinusoidal intralayer pore system of MWW. The calculations showed also that the dication is able to stabilize the interlayer space without disturbing the hydrogen-bonding system that holds the layers together in the as-made material. The 19F magic-angle spinning (MAS) NMR presented two distinct resonances at −71 and −83 ppm, which, on the basis of DFT calculations, we tentatively assigned to fluoride occluded in [4662] and [415262] cages of the MWW structure, respectively. The same DFT study determines a different chemical shift of one methyl 13C nuclear magnetic resonance according to the imidazolium ring residing in the sinusoidal channels or in the large cup cavities, thus explaining an experimentally observed splitting of that resonance.  相似文献   
999.
1000.
MoS2, a typical layered transition-metal dichalcogenide, is promising as an electrode material in supercapacitors. However, its low electrical conductivity could lead to limited capacitance if applied in electrochemical devices. Herein, a new nanostructure composed of hollow carbon–MoS2–carbon was successfully synthesized through an l -cysteine-assisted hydrothermal method by using gibbsite as a template and polydopamine as a carbon precursor. After calcination and etching of the gibbsite template, uniform hollow platelets, which were made of a sandwich-like assembly of partial graphitic carbon and two-dimensional layered MoS2 flakes, were obtained. The platelets showed excellent dispersibility and stability in water, and good electrical conductivity due to carbon provided by the calcination of polydopamine coatings. The hollow nanoplate morphology of the material provided a high specific surface area of 543 m2 g−1, a total pore volume of 0.677 cm3 g−1, and fairly small mesopores (≈5.3 nm). The material was applied in a symmetric supercapacitor and exhibited a specific capacitance of 248 F g−1 (0.12 F cm−2) at a constant current density of 0.1 A g−1; thus suggesting that hollow carbon–MoS2–carbon nanoplates are promising candidate materials for supercapacitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号