首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8917篇
  免费   1676篇
  国内免费   1049篇
化学   6638篇
晶体学   94篇
力学   426篇
综合类   89篇
数学   849篇
物理学   3546篇
  2024年   40篇
  2023年   200篇
  2022年   346篇
  2021年   385篇
  2020年   424篇
  2019年   474篇
  2018年   377篇
  2017年   346篇
  2016年   509篇
  2015年   498篇
  2014年   583篇
  2013年   707篇
  2012年   877篇
  2011年   832篇
  2010年   610篇
  2009年   509篇
  2008年   588篇
  2007年   546篇
  2006年   435篇
  2005年   338篇
  2004年   243篇
  2003年   226篇
  2002年   266篇
  2001年   252篇
  2000年   144篇
  1999年   183篇
  1998年   122篇
  1997年   82篇
  1996年   76篇
  1995年   55篇
  1994年   58篇
  1993年   57篇
  1992年   48篇
  1991年   47篇
  1990年   40篇
  1989年   33篇
  1988年   22篇
  1987年   18篇
  1986年   12篇
  1985年   8篇
  1984年   7篇
  1983年   8篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1959年   2篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
采用量子统计系综理论,研究了基态NO分子宏观气体摩尔熵、摩尔内能、摩尔热容等热力学性质.首先应用课题组前期建立的变分代数法(variational algebraic method, VAM)计算获得了基态NO分子的完全振动能级,得到的VAM振动能级作为振动部分,结合欧拉-麦克劳林渐进展开公式的转动贡献,应用于经典的热力学与统计物理公式中,从而计算得到了1000-5000 K温度范围内NO宏观气体的摩尔内能、摩尔熵和摩尔热容.将不同方法计算得到的摩尔热容结果分别与实验值进行比较,结果表明基于VAM完全振动能级获得的结果优于其他方法获得的理论结果.振动部分采用谐振子模型对无限能级求和计算热力学性质的方法有一定的局限性,应当使用有限的完全振动能级进行统计求和.  相似文献   
102.
103.
Target tracking technology that is based on aerial videos is widely used in many fields; however, this technology has challenges, such as image jitter, target blur, high data dimensionality, and large changes in the target scale. In this paper, the research status of aerial video tracking and the characteristics, background complexity and tracking diversity of aerial video targets are summarized. Based on the findings, the key technologies that are related to tracking are elaborated according to the target type, number of targets and applicable scene system. The tracking algorithms are classified according to the type of target, and the target tracking algorithms that are based on deep learning are classified according to the network structure. Commonly used aerial photography datasets are described, and the accuracies of commonly used target tracking methods are evaluated in an aerial photography dataset, namely, UAV123, and a long-video dataset, namely, UAV20L. Potential problems are discussed, and possible future research directions and corresponding development trends in this field are analyzed and summarized.  相似文献   
104.
The eight-band κ·p model is used to establish the energy band structure model of the type-II InAs/GaSb superlattice detectors with a cut-off wavelength of 10.5μm,and the best composition of M-structure in this type of device is calculated theoretically.In addition,we have also experimented on the devices designed with the best performance to investigate the effect of the active region p-type doping temperature on the quantum efficiency of the device.The results show that the modest active region doping temperature(Be:760℃)can improve the quantum efficiency of the device with the best performance,while excessive doping(Be:>760℃)is not conducive to improving the photo response.With the best designed structure and an appropriate doping concentration,a maximum quantum efficiency of 45% is achieved with a resistance-area product of 688?·cm^2,corresponding to a maximum detectivity of 7.35×10^11cm·Hz^1/2/W.  相似文献   
105.
The multicaloric effect refers to the thermal response of a solid material driven by simultaneous or sequential application of more than one type of external field.For practical applications,the multicaloric effect is a potentially interesting strategy to improve the efficiency of refrigeration devices.Here,the state of the art in multi-field driven multicaloric effect is reviewed.The phenomenology and fundamental thermodynamics of the multicaloric effect are well established.A number of theoretical and experimental research approaches are covered.At present,the theoretical understanding of the multicaloric effect is thorough.However,due to the limitation of the current experimental technology,the experimental approach is still in progress.All these researches indicated that the thermal response and effective reversibility of multiferroic materials can be improved through multicaloric cycles to overcome the inherent limitations of the physical mechanisms behind single-field-induced caloric effects.Finally,the viewpoint of further developments is presented.  相似文献   
106.
The three lowest-lying ϒ states, i.e., ϒ(1S), ϒ(2S), and ϒ(3S), composed of bb¯ pairs and below the BB ¯ threshold, provide a good platform for the researches of hadronic physics and physics beyond the Standard Model. They can be produced directly in e+e colliding experiments, such as CLEO, Babar, and Belle, with low continuum backgrounds. In these experiments, many measurements of the exclusive ϒ(1S) and ϒ(2S) decays into light hadrons, which shed light on the “80% rule” for the Okubo–Zweig–Iizuka suppressed decays in the bottomonium sector, were carried out. Meanwhile, many studies of the charmonium and bottomonium productions in ϒ(1S, 2S, 3S) decays were performed, to distinguish different Quantum Chromodynamics (QCD) models. Besides, exotic states and new physics were also extensively explored in ϒ(1S, 2S, 3S) decays at CLEO, BaBar, and Belle. The ϒ(1S, 2S, 3S) states can also be produced in pp collisions and in collisions involving heavy ions. The precision measurements of their cross sections and polarizations at the large hadron collider (LHC), especially in the CMS, ATLAS, and LHCb experiments, help to understandΥproduction mechanisms in pp collisions. The observation of the sequentialΥsuppression in heavy ion collisions at CMS, LHCb, and ALICE is of great importance for verifying the quark–gluon plasma predicted by QCD. In this article, we review the experimental results on ϒ(1S, 2S, 3S) at e+e colliders and the LHC, and summarize their prospects at Belle II and the LHC.  相似文献   
107.
The two-dimensional (2D) C3N has emerged as a material with promising applications in high performance device owing to its intrinsic bandgap and tunable electronic properties. Although there are several reports about the bandgap tuning of C3N via stacking or forming nanoribbon, bandgap modulation of bilayer C3N nanoribbons (C3NNRs) with various edge structures is still far from well understood. Here, based on extensive first-principles calculations, we demonstrated the effective bandgap engineering of C3N by cutting it into hydrogen passivated C3NNRs and stacking them into bilayer heterostructures. It was found that armchair (AC) C3NNRs with three types of edge structures are all semiconductors, while only zigzag (ZZ) C3NNRs with edges composed of both C and N atoms (ZZCN/ CN) are semiconductors. The bandgaps of all semiconducting C3NNRs are larger than that of C3N nanosheet. More interestingly, AC-C3NNRs with CN/CN edges (AC-CN/CN) possess direct bandgap while ZZ-CN/CN have indirect bandgap. Compared with the monolayer C3NNR, the bandgaps of bilayer C3NNRs can be greatly modulated via different stacking orders and edge structures, varying from 0.43 eV for ZZ-CN/CN with AB′-stacking to 0.04 eV for AC-CN/CN with AA-stacking. Particularly, transition from direct to indirect bandgap was observed in the bilayer AC-CN/CN heterostructure with AA′-stacking, and the indirect-to-direct transition was found in the bilayer ZZ-CN/CN with ABstacking. This work provides insights into the effective bandgap engineering of C3N and offers a new opportunity for its applications in nano-electronics and optoelectronic devices.  相似文献   
108.
Bismuth oxide subacetate(CH3COO(BiO);BiOAc)with a large band gap energy(Eg)was first applied as an ultraviolet-light-driven photocatalyst in our group.MoS2 nano...  相似文献   
109.
Vehicles carrying hazardous material (hazmat) are severe threats to the safety of highway transportation, and a model that can automatically recognize hazmat markers installed or attached on vehicles is essential for intelligent management systems. However, there is still no public dataset for benchmarking the task of hazmat marker detection. To this end, this paper releases a large-scale vehicle hazmat marker dataset named VisInt-VHM, which includes 10,000 images with a total of 20,023 hazmat markers captured under different environmental conditions from a real-world highway. Meanwhile, we provide an compact hazmat marker detection network named HMD-Net, which utilizes a revised lightweight backbone and is further compressed by channel pruning. As a consequence, the trained-model can be efficiently deployed on a resource-restricted edge device. Experimental results demonstrate that compared with some established methods such as YOLOv3, YOLOv4, their lightweight versions and popular lightweight models, HMD-Net can achieve a better trade-off between the detection accuracy and the inference speed.  相似文献   
110.
Design of active catalysts for chemical utilization of methane under mild conditions is of great importance, but remains a challenging task. Here, we prepared a Ag/AgCl with SiO2 coating (Ag/AgCl@SiO2) photocatalyst for methane oxidation to carbon monoxide. High carbon monoxide production (2.3 μmol h−1) and high selectivity (73%) were achieved. SiO2 plays a key role in the superior performance by increasing the lifetime of the photogenerated charge carriers. Based on a set of semi in situ infrared spectroscopy, electron paramagnetic resonance, and electronic property characterization studies, it is revealed that CH4 is effectively and selectively oxidized to CO by the in situ formation of singlet 1O2via the key intermediate of COOH*. Further study showed that the Ag/AgCl@SiO2 catalyst could also drive valuable conversion using real sunlight under ambient conditions. As far we know, this is the first work on the application of SiO2 modified Ag/AgCl in the methane oxidation reaction.

The Ag/AgCl@SiO2 catalyst exhibits excellent photocatalytic activity in selective aerobic oxidation of methane to carbon monoxide with high selectivity, and extended real light simulation feasibility shows potential in practical application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号